RESUMO
Novel or rare damaging mutations have been implicated in the developmental pathogenesis of nonsyndromic cleft lip with or without cleft palate (nsCL ± P). Thus, we investigated the human genome for high-impact mutations that could explain the risk of nsCL ± P in our cohorts.We conducted next-generation sequencing (NGS) analysis of 130 nsCL ± P case-parent African trios to identify pathogenic variants that contribute to the risk of clefting. We replicated this analysis using whole-exome sequence data from a Brazilian nsCL ± P cohort. Computational analyses were then used to predict the mechanism by which these variants could result in increased risks for nsCL ± P.We discovered damaging mutations within the AFDN gene, a cell adhesion molecule (CAMs) that was previously shown to contribute to cleft palate in mice. These mutations include p.Met1164Ile, p.Thr453Asn, p.Pro1638Ala, p.Arg669Gln, p.Ala1717Val, and p.Arg1596His. We also discovered a novel splicing p.Leu1588Leu mutation in this protein. Computational analysis suggests that these amino acid changes affect the interactions with other cleft-associated genes including nectins (PVRL1, PVRL2, PVRL3, and PVRL4) CDH1, CTNNA1, and CTNND1.This is the first report on the contribution of AFDN to the risk for nsCL ± P in humans. AFDN encodes AFADIN, an important CAM that forms calcium-independent complexes with nectins 1 and 4 (encoded by the genes PVRL1 and PVRL4). This discovery shows the power of NGS analysis of multiethnic cleft samples in combination with a computational approach in the understanding of the pathogenesis of nsCL ± P.
RESUMO
The majority (85%) of nonsyndromic cleft lip with or without cleft palate (nsCL/P) cases occur sporadically, suggesting a role for de novo mutations (DNMs) in the etiology of nsCL/P. To identify high impact protein-altering DNMs that contribute to the risk of nsCL/P, we conducted whole-genome sequencing (WGS) analyses in 130 African case-parent trios (affected probands and unaffected parents). We identified 162 high confidence protein-altering DNMs some of which are based on available evidence, contribute to the risk of nsCL/P. These include novel protein-truncating DNMs in the ACTL6A, ARHGAP10, MINK1, TMEM5 and TTN genes; as well as missense variants in ACAN, DHRS3, DLX6, EPHB2, FKBP10, KMT2D, RECQL4, SEMA3C, SEMA4D, SHH, TP63, and TULP4. Many of these protein-altering DNMs were predicted to be pathogenic. Analysis using mouse transcriptomics data showed that some of these genes are expressed during the development of primary and secondary palate. Gene-set enrichment analysis of the protein-altering DNMs identified palatal development and neural crest migration among the few processes that were significantly enriched. These processes are directly involved in the etiopathogenesis of clefting. The analysis of the coding sequence in the WGS data provides more evidence of the opportunity for novel findings in the African genome.
Assuntos
Fenda Labial , Fissura Palatina , Animais , Encéfalo/anormalidades , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Camundongos , Mutação , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Orofacial clefts (OFCs) are congenital malformations of the face and palate, with an incidence of 1 per 700 live births. Clubfoot or congenital talipes equinovarus (CTEV) is a three-dimensional abnormality of the leg, ankle, and feet that leads to the anomalous positioning of foot and ankle joints and has an incidence of 1 per 1000 live births. OFCs and CTEV may occur together or separately in certain genetic syndromes in addition to other congenital abnormalities. Here, we sought to decipher the genetic etiology of OFC and CTEV that occurred together in six probands. METHODS: At the time of recruitment, the most clinically obvious congenital anomalies in these individuals were the OFC and CTEV. We carried out whole-exome sequencing (WES) on DNA samples from probands and available parents employing the Agilent SureSelect XT kit and Illumina HiSeq2500 platform, followed by bioinformatics analyses. WES variants were validated by clinical Sanger Sequencing. RESULTS: Of the six probands, we observed probable pathogenic genetic variants in four. In three probands with probable pathogenic genetic variants, each individual had variants in three different genes, whereas one proband had probable pathogenic variant in just one gene. In one proband, we observed variants in DIS3L2, a gene associated with Perlman syndrome. A second proband had variants in EPG5 (associated with Vici Syndrome), BARX1 and MKI67, while another proband had potentially etiologic variants in FRAS1 (associated with Fraser Syndrome 1), TCOF1 (associated with Treacher Collins Syndrome 1) and MKI67. The last proband had variants in FRAS1, PRDM16 (associated with Cardiomyopathy, dilated, 1LL/Left ventricular noncompaction 8) and CHD7 (associated with CHARGE syndrome/Hypogonadotropic hypogonadism 5 with or without anosmia). CONCLUSION: Our results suggest that clubfoot and OFCs are two congenital abnormalities that can co-occur in certain individuals with varying genetic causes and expressivity, warranting the need for deep phenotyping.