Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34891155

RESUMO

The extraction of predictive features from the complex high-dimensional multi-omic data is necessary for decoding and overcoming the therapeutic responses in systems pharmacology. Developing computational methods to reduce high-dimensional space of features in in vitro, in vivo and clinical data is essential to discover the evolution and mechanisms of the drug responses and drug resistance. In this paper, we have utilized the matrix factorization (MF) as a modality for high dimensionality reduction in systems pharmacology. In this respect, we have proposed three novel feature selection methods using the mathematical conception of a basis for features. We have applied these techniques as well as three other MF methods to analyze eight different gene expression datasets to investigate and compare their performance for feature selection. Our results show that these methods are capable of reducing the feature spaces and find predictive features in terms of phenotype determination. The three proposed techniques outperform the other methods used and can extract a 2-gene signature predictive of a tyrosine kinase inhibitor treatment response in the Cancer Cell Line Encyclopedia.


Assuntos
Algoritmos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Farmacologia em Rede
2.
Neural Netw ; 166: 188-203, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499604

RESUMO

Subspace distance is an invaluable tool exploited in a wide range of feature selection methods. The power of subspace distance is that it can identify a representative subspace, including a group of features that can efficiently approximate the space of original features. On the other hand, employing intrinsic statistical information of data can play a significant role in a feature selection process. Nevertheless, most of the existing feature selection methods founded on the subspace distance are limited in properly fulfilling this objective. To pursue this void, we propose a framework that takes a subspace distance into account which is called "Variance-Covariance subspace distance". The approach gains advantages from the correlation of information included in the features of data, thus determines all the feature subsets whose corresponding Variance-Covariance matrix has the minimum norm property. Consequently, a novel, yet efficient unsupervised feature selection framework is introduced based on the Variance-Covariance distance to handle both the dimensionality reduction and subspace learning tasks. The proposed framework has the ability to exclude those features that have the least variance from the original feature set. Moreover, an efficient update algorithm is provided along with its associated convergence analysis to solve the optimization side of the proposed approach. An extensive number of experiments on nine benchmark datasets are also conducted to assess the performance of our method from which the results demonstrate its superiority over a variety of state-of-the-art unsupervised feature selection methods. The source code is available at https://github.com/SaeedKarami/VCSDFS.


Assuntos
Algoritmos , Reconhecimento Automatizado de Padrão , Reconhecimento Automatizado de Padrão/métodos , Aprendizagem , Software , Benchmarking
3.
Comput Biol Med ; 146: 105426, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569336

RESUMO

One of the most critical challenges in managing complex diseases like COVID-19 is to establish an intelligent triage system that can optimize the clinical decision-making at the time of a global pandemic. The clinical presentation and patients' characteristics are usually utilized to identify those patients who need more critical care. However, the clinical evidence shows an unmet need to determine more accurate and optimal clinical biomarkers to triage patients under a condition like the COVID-19 crisis. Here we have presented a machine learning approach to find a group of clinical indicators from the blood tests of a set of COVID-19 patients that are predictive of poor prognosis and morbidity. Our approach consists of two interconnected schemes: Feature Selection and Prognosis Classification. The former is based on different Matrix Factorization (MF)-based methods, and the latter is performed using Random Forest algorithm. Our model reveals that Arterial Blood Gas (ABG) O2 Saturation and C-Reactive Protein (CRP) are the most important clinical biomarkers determining the poor prognosis in these patients. Our approach paves the path of building quantitative and optimized clinical management systems for COVID-19 and similar diseases.


Assuntos
COVID-19 , Biomarcadores , Humanos , Aprendizado de Máquina , Pandemias , Triagem/métodos
4.
medRxiv ; 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34268522

RESUMO

One of the most critical challenges in managing complex diseases like COVID-19 is to establish an intelligent triage system that can optimize the clinical decision-making at the time of a global pandemic. The clinical presentation and patients’ characteristics are usually utilized to identify those patients who need more critical care. However, the clinical evidence shows an unmet need to determine more accurate and optimal clinical biomarkers to triage patients under a condition like the COVID-19 crisis. Here we have presented a machine learning approach to find a group of clinical indicators from the blood tests of a set of COVID-19 patients that are predictive of poor prognosis and morbidity. Our approach consists of two interconnected schemes: Feature Selection and Prognosis Classification. The former is based on different Matrix Factorization (MF)-based methods, and the latter is performed using Random Forest algorithm. Our model reveals that Arterial Blood Gas (ABG) O 2 Saturation and C-Reactive Protein (CRP) are the most important clinical biomarkers determining the poor prognosis in these patients. Our approach paves the path of building quantitative and optimized clinical management systems for COVID-19 and similar diseases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa