Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2023: 4506488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776617

RESUMO

Cancer has been a significant threat to human health and well-being, posing the biggest obstacle in the history of human sickness. The high death rate in cancer patients is primarily due to the complexity of the disease and the wide range of clinical outcomes. Increasing the accuracy of the prediction is equally crucial as predicting the survival rate of cancer patients, which has become a key issue of cancer research. Many models have been suggested at the moment. However, most of them simply use single genetic data or clinical data to construct prediction models for cancer survival. There is a lot of emphasis in present survival studies on determining whether or not a patient will survive five years. The personal issue of how long a lung cancer patient will survive remains unanswered. The proposed technique Naive Bayes and SSA is estimating the overall survival time with lung cancer. Two machine learning challenges are derived from a single customized query. To begin with, determining whether a patient will survive for more than five years is a simple binary question. The second step is to develop a five-year survival model using regression analysis. When asked to forecast how long a lung cancer patient would survive within five years, the mean absolute error (MAE) of this technique's predictions is accurate within a month. Several biomarker genes have been associated with lung cancers. The accuracy, recall, and precision achieved from this algorithm are 98.78%, 98.4%, and 98.6%, respectively.


Assuntos
Heurística , Neoplasias Pulmonares , Humanos , Teorema de Bayes , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Aprendizado de Máquina , Algoritmos
2.
Biomed Res Int ; 2022: 2805607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463989

RESUMO

Colorectal Cancer (CRC) is the third most dangerous cancer in the world and also increasing day by day. So, timely and accurate diagnosis is required to save the life of patients. Cancer grows from polyps which can be either cancerous or noncancerous. So, if the cancerous polyps are detected accurately and removed on time, then the dangerous consequences of cancer can be reduced to a large extent. The colonoscopy is used to detect the presence of colorectal polyps. However, manual examinations performed by experts are prone to various errors. Therefore, some researchers have utilized machine and deep learning-based models to automate the diagnosis process. However, existing models suffer from overfitting and gradient vanishing problems. To overcome these problems, a convolutional neural network- (CNN-) based deep learning model is proposed. Initially, guided image filter and dynamic histogram equalization approaches are used to filter and enhance the colonoscopy images. Thereafter, Single Shot MultiBox Detector (SSD) is used to efficiently detect and classify colorectal polyps from colonoscopy images. Finally, fully connected layers with dropouts are used to classify the polyp classes. Extensive experimental results on benchmark dataset show that the proposed model achieves significantly better results than the competitive models. The proposed model can detect and classify colorectal polyps from the colonoscopy images with 92% accuracy.


Assuntos
Pólipos do Colo , Neoplasias Colorretais , Aprendizado Profundo , Pólipos do Colo/diagnóstico por imagem , Colonoscopia , Neoplasias Colorretais/diagnóstico por imagem , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa