RESUMO
RATIONALE: Ca2+-induced Ca2+ release (CICR) in normal hearts requires close approximation of L-type calcium channels (LTCCs) within the transverse tubules (T-tubules) and RyR (ryanodine receptors) within the junctional sarcoplasmic reticulum. CICR is disrupted in cardiac hypertrophy and heart failure, which is associated with loss of T-tubules and disruption of cardiac dyads. In these conditions, LTCCs are redistributed from the T-tubules to disrupt CICR. The molecular mechanism responsible for LTCCs recruitment to and from the T-tubules is not well known. JPH (junctophilin) 2 enables close association between T-tubules and the junctional sarcoplasmic reticulum to ensure efficient CICR. JPH2 has a so-called joining region that is located near domains that interact with T-tubular plasma membrane, where LTCCs are housed. The idea that this joining region directly interacts with LTCCs and contributes to LTCC recruitment to T-tubules is unknown. OBJECTIVE: To determine if the joining region in JPH2 recruits LTCCs to T-tubules through direct molecular interaction in cardiomyocytes to enable efficient CICR. METHODS AND RESULTS: Modified abundance of JPH2 and redistribution of LTCC were studied in left ventricular hypertrophy in vivo and in cultured adult feline and rat ventricular myocytes. Protein-protein interaction studies showed that the joining region in JPH2 interacts with LTCC-α1C subunit and causes LTCCs distribution to the dyads, where they colocalize with RyRs. A JPH2 with induced mutations in the joining region (mutPG1JPH2) caused T-tubule remodeling and dyad loss, showing that an interaction between LTCC and JPH2 is crucial for T-tubule stabilization. mutPG1JPH2 caused asynchronous Ca2+-release with impaired excitation-contraction coupling after ß-adrenergic stimulation. The disturbed Ca2+ regulation in mutPG1JPH2 overexpressing myocytes caused calcium/calmodulin-dependent kinase II activation and altered myocyte bioenergetics. CONCLUSIONS: The interaction between LTCC and the joining region in JPH2 facilitates dyad assembly and maintains normal CICR in cardiomyocytes.
Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Gatos , Células Cultivadas , Modelos Animais de Doenças , Acoplamento Excitação-Contração , Humanos , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Cinética , Masculino , Proteínas de Membrana/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas Musculares/genética , Mutação , Miócitos Cardíacos/patologia , Biogênese de Organelas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de RianodinaRESUMO
BACKGROUND: Cardiac rupture is a major lethal complication of acute myocardial infarction (MI). Despite significant advances in reperfusion strategies, mortality from cardiac rupture remains high. Studies suggest that cardiac rupture can be accelerated by thrombolytic therapy, but the relevance of this risk factor remains controversial. METHODS: We analyzed protease-activated receptor 4 (Par4) expression in mouse hearts with MI and investigated the effects of Par4 deletion on cardiac remodeling and function after MI by echocardiography, quantitative immunohistochemistry, and flow cytometry. RESULTS: Par4 mRNA and protein levels were increased in mouse hearts after MI and in isolated cardiomyocytes in response to hypertrophic and inflammatory stimuli. Par4-deficient mice showed less myocyte apoptosis, reduced infarct size, and improved functional recovery after acute MI relative to wild-type (WT). Conversely, Par4-/- mice showed impaired cardiac function, greater rates of myocardial rupture, and increased mortality after chronic MI relative to WT. Pathological evaluation of hearts from Par4-/- mice demonstrated a greater infarct expansion, increased cardiac hemorrhage, and delayed neutrophil accumulation, which resulted in impaired post-MI healing compared with WT. Par4 deficiency also attenuated neutrophil apoptosis in vitro and after MI in vivo and impaired inflammation resolution in infarcted myocardium. Transfer of Par4-/- neutrophils, but not of Par4-/- platelets, in WT recipient mice delayed inflammation resolution, increased cardiac hemorrhage, and enhanced cardiac dysfunction. In parallel, adoptive transfer of WT neutrophils into Par4-/- mice restored inflammation resolution, reduced cardiac rupture incidence, and improved cardiac function after MI. CONCLUSIONS: These findings reveal essential roles of Par4 in neutrophil apoptosis and inflammation resolution during myocardial healing and point to Par4 inhibition as a potential therapy that should be limited to the acute phases of ischemic insult and avoided for long-term treatment after MI.
Assuntos
Regulação da Expressão Gênica , Ruptura Cardíaca , Infarto do Miocárdio , Miocárdio/metabolismo , Receptores de Trombina/deficiência , Animais , Feminino , Ruptura Cardíaca/etiologia , Ruptura Cardíaca/genética , Ruptura Cardíaca/metabolismo , Ruptura Cardíaca/prevenção & controle , Inflamação/genética , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/classificação , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Receptores de Trombina/biossínteseRESUMO
The roles and the underlying mechanisms of M1-type macrophages in angiogenesis and postmyocardial infarction (MI) cardiac repair have remained unclear. In this study, we investigated the role of M1-like macrophage-derived exosomes in a MI microenvironment. We found that the proinflammatory M1-like-type macrophages released an extensive array of proinflammatory exosomes (M1-Exos) after MI. M1-Exos exerted an anti-angiogenic effect and accelerated MI injury. They also exhibited highly expressed proinflammatory miRNAs, such as miR-155. miR-155 was transferred to endothelial cells (ECs), leading to the inhibition of angiogenesis and cardiac dysfunction by downregulating its novel target genes, including Rac family small GTPase 1 (RAC1), p21 (RAC1)-activated kinase 2 (PAK2), Sirtuin 1 (Sirt1), and protein kinase AMP-activated catalytic subunit alpha 2 (AMPKα2). M1-Exos depressed Sirt1/AMPKα2-endothelial nitric oxide synthase and RAC1-PAK2 signaling pathways by simultaneously targeting the five molecule nodes (genes), reduced the angiogenic ability of ECs, aggravated myocardial injury, and restrained cardiac healing. The elucidation of this mechanism provides novel insights into the functional significance of M1 macrophages and their derived exosomes on angiogenesis and cardiac repair. This mechanism can be used as a novel potential therapeutic approach for the prevention and treatment of MI.
Assuntos
Microambiente Celular , Células Endoteliais/metabolismo , Exossomos/metabolismo , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Neovascularização Fisiológica , Função Ventricular Esquerda , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Exossomos/transplante , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Fenótipo , Células RAW 264.7 , Transdução de Sinais , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Células THP-1 , Proteínas rab27 de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP/metabolismoRESUMO
Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease worldwide. Due to the growing economic burden of NAFLD on public health, it has become an emergent target for clinical intervention. DUSP12 is a member of the dual specificity phosphatase (DUSP) family, which plays important roles in brown adipocyte differentiation, microbial infection, and cardiac hypertrophy. However, the role of DUSP12 in NAFLD has yet to be clarified. Here, we reveal that DUSP12 protects against hepatic steatosis and inflammation in L02 cells after palmitic acid/oleic acid treatment. We demonstrate that hepatocyte specific DUSP12-deficient mice exhibit high-fat diet (HFD)-induced and high-fat high-cholesterol diet-induced hyperinsulinemia and liver steatosis and decreased insulin sensitivity. Consistently, DUSP12 overexpression in hepatocyte could reduce HFD-induced hepatic steatosis, insulin resistance, and inflammation. At the molecular level, steatosis in the absence of DUSP12 was characterized by elevated apoptosis signal-regulating kinase 1 (ASK1), which mediates the mitogen-activated protein kinase (MAPK) pathway and hepatic metabolism. DUSP12 physically binds to ASK1, promotes its dephosphorylation, and inhibits its action on ASK1-related proteins, JUN N-terminal kinase, and p38 MAPK in order to inhibit lipogenesis under high-fat conditions. Conclusion: DUSP12 acts as a positive regulator in hepatic steatosis and offers potential therapeutic opportunities for NAFLD.
Assuntos
Apoptose/genética , Fosfatases de Especificidade Dupla/genética , Regulação da Expressão Gênica , MAP Quinase Quinase Quinase 5/genética , Hepatopatia Gordurosa não Alcoólica/genética , Análise de Variância , Animais , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Distribuição Aleatória , Valores de Referência , Transdução de Sinais/genéticaRESUMO
BACKGROUND: Inflammatory serine proteases (ISPs) play an important role in cardiac repair after injury through hydrolysis of dead cells and extracellular matrix (ECM) debris. Evidence also suggests an important role of ISPs in the coordination of the inflammatory response. However, the effect of ISPs on inflammation is obfuscated by the confounding factors associated with cell death and inflammatory cell infiltration induced after cardiac injury. This study investigated whether neutrophil-derived cathepsin G (Cat.G) influences inflammation and remodeling in the absence of prior cardiac injury and cell death. METHODS AND RESULTS: Intracardiac catheter delivery of Cat.G (1â¯mg/kg) in rats induced significant left ventricular (LV) dilatation and cardiac contractile dysfunction at day 5, but not at day 2, post-delivery compared to vehicle-treated animals. Cat.G delivery also significantly increased matrix metalloprotease activity and collagen and fibronectin degradation at day 5 compared to vehicle-treated rats and these changes were associated with increased death signaling pathways and myocyte apoptosis. Mechanistic analysis shows that Cat.G-treatment induced potent chemotactic activity in hearts at day 2 and 5 post-delivery, characterized by processing and activation of interleukin (IL)-1ß and IL-18, stimulation of inflammatory signaling pathways and accumulation of myeloid cells when compared to vehicle-treated rats. Cat.G-induced processing of IL-1ß and IL-18 was independent of the canonical NLRP-3 inflammasome pathway and treatment of isolated cardiomyocytes with inhibitors of NLRP-3 or caspase-1 failed to reduce Cat.G-induced cardiomyocyte death. Notably, rats treated with IL-1 receptor antagonist (IL-1Ra) show reduced inflammation and improved cardiac remodeling and function following Cat.G delivery. CONCLUSIONS: Cat.G exerts potent chemoattractant and pro-inflammatory effects in non-stressed or injured heart in part through processing and activation of IL-1 family cytokines, subsequently leading to adverse cardiac remodeling and function. Thus, targeting ISPs could be a novel therapeutic strategy to reduce cardiac inflammation and improve cardiac remodeling and function after injury or stress.
Assuntos
Remodelamento Atrial/efeitos dos fármacos , Cateteres Cardíacos , Catepsina G/administração & dosagem , Inflamassomos/efeitos dos fármacos , Inflamação/induzido quimicamente , Remodelação Ventricular/efeitos dos fármacos , Animais , Cateterismo Cardíaco , Catepsina G/efeitos adversos , Catepsina G/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Masculino , Neutrófilos/enzimologia , Neutrófilos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND/AIMS: Diabetic cardiomyopathy (DCM) is characterized by structural and functional alterations that can lead to heart failure. Several mechanisms are known to be involved in the pathogenesis of DCM, however, the molecular mechanism that links inflammation to DCM is incompletely understood. To learn about this mechanism, we investigated the role of inflammatory serine proteases (ISPs) during the development of DCM. METHODS: Eight weeks old mice with deletion of dipeptidyl peptidase I (DPPI), an enzyme involved in the maturation of major ISPs, and wild type (WT) mice controls were injected with streptozotocin (50 mg/kg for 5 days intraperitoneally) and studied after 4, 8, 16, and 20 week after induction of type 1 diabetes mellitus (T1DM). Induction of diabetes was followed by echocardiographic measurements, glycemic and hemoglobulin A1c profiling, immunoblot, qPCR, enzyme activity assays, and immunohistochemistry (IHC) analysis of DPPI, ISPs, and inflammatory markers. Fibrosis was determined from left ventricular heart by Serius Red staining and qPCR. Apoptosis was determined by TUNEL assay and immunoblot analysis. RESULTS: In the diabetic WT mice, DPPI expression increased along with ISP activation, and DPPI accumulated abundantly in the left ventricle mainly from infiltrating neutrophils. In diabetic DPPI-knockout (DPPI-KO) mice, significantly decreased activation of ISPs, myocyte apoptosis, fibrosis, and cardiac function was improved compared to diabetic WT mice. In addition, DPPI-KO mice showed a decrease in overall inflammatory status mediated by diabetes induction which was manifested by decreased production of pro-inflammatory cytokines like TNF-α, IL-1ß and IL-6. CONCLUSION: This study elucidates a novel role of ISPs in potentiating the immunological responses that lead to the pathogenesis of DCM in T1DM. To the best of our knowledge, this is the first study to report that DPPI expression and activation promotes the inflammation that enhances myocyte apoptosis and contributes to the adverse cardiac remodeling that subsequently leads to DCM.
Assuntos
Catepsina C/metabolismo , Cardiomiopatias Diabéticas/patologia , Serina Proteases/metabolismo , Animais , Apoptose , Glicemia/análise , Catepsina C/genética , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/etiologia , Regulação para Baixo , Fibrose , Coração/fisiologia , Ventrículos do Coração/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/citologia , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismoRESUMO
Platelet-derived microparticles (PMPs) are associated with enhancement of metastasis and poor cancer outcomes. Circulating PMPs transfer platelet microRNAs (miRNAs) to vascular cells. Solid tumor vasculature is highly permeable, allowing the possibility of PMP-tumor cell interaction. Here, we show that PMPs infiltrate solid tumors in humans and mice and transfer platelet-derived RNA, including miRNAs, to tumor cells in vivo and in vitro, resulting in tumor cell apoptosis. MiR-24 was a major species in this transfer. PMP transfusion inhibited growth of both lung and colon carcinoma ectopic tumors, whereas blockade of miR-24 in tumor cells accelerated tumor growth in vivo, and prevented tumor growth inhibition by PMPs. Conversely, Par4-deleted mice, which had reduced circulating microparticles (MPs), supported accelerated tumor growth which was halted by PMP transfusion. PMP targeting was associated with tumor cell apoptosis in vivo. We identified direct RNA targets of platelet-derived miR-24 in tumor cells, which included mitochondrial mt-Nd2, and Snora75, a noncoding small nucleolar RNA. These RNAs were suppressed in PMP-treated tumor cells, resulting in mitochondrial dysfunction and growth inhibition, in an miR-24-dependent manner. Thus, platelet-derived miRNAs transfer in vivo to tumor cells in solid tumors via infiltrating MPs, regulate tumor cell gene expression, and modulate tumor progression. These findings provide novel insight into mechanisms of horizontal RNA transfer and add multiple layers to the regulatory roles of miRNAs and PMPs in tumor progression. Plasma MP-mediated transfer of regulatory RNAs and modulation of gene expression may be a common feature with important outcomes in contexts of enhanced vascular permeability.
Assuntos
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Animais , Micropartículas Derivadas de Células/transplante , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores Ativados por ProteinaseRESUMO
Early reperfusion of ischemic cardiac tissue increases inflammatory cell infiltration which contributes to cardiomyocyte death and loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Neutrophil- and mast cell-derived proteases, cathepsin G (Cat.G) and chymase, are released early after IR, but their function is complicated by potentially redundant actions and targets. This study investigated whether a dual inhibition of Cat.G and chymase influences cardiomyocyte injury and wound healing after experimental IR in mice. Treatment with a dual Cat.G and chymase inhibitor (DCCI) immediately after reperfusion blocked cardiac Cat.G and chymase activity induced after IR, which resulted in decreased immune response in the infarcted heart. Mice treated with DCCI had less myocardial collagen deposition and showed preserved ventricular function at 1 and 7 days post-IR compared with vehicle-treated mice. DCCI treatment also significantly attenuated focal adhesion (FA) complex disruption and myocyte degeneration after IR. Treatment of isolated cardiomyocytes with Cat.G or chymase significantly promoted FA signaling downregulation, myofibril degeneration and myocyte apoptosis. Conversely, treatment of cardiac fibroblasts with Cat.G or chymase induced FA signaling activation and increased their migration and differentiation to myofibroblasts. These opposite responses in cardiomyocytes and fibroblasts were blocked by treatment with DCCI. These findings show that Cat.G and chymase are key mediators of myocyte apoptosis and fibroblast migration and differentiation that play a role in adverse cardiac remodeling and function post-IR. Thus, dual targeting of neutrophil- and mast cell-derived proteases could be used as a novel therapeutic strategy to reduce post-IR inflammation and improve cardiac remodeling.
Assuntos
Remodelamento Atrial/fisiologia , Catepsina G/antagonistas & inibidores , Quimases/antagonistas & inibidores , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/patologia , Animais , Apoptose/fisiologia , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologiaRESUMO
This commentary highlights the research presented by Li et al. [15]. In this issue of Clinical Science, which demonstrates that dual specific phosphatase 12 (DUSP12), through JNK1/2 inhibition, alleviates cardiac hypertrophy in response to pressure overload, making it a potential therapeutic target.
Assuntos
Cardiomegalia/enzimologia , Fosfatases de Especificidade Dupla/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Fosfatases de Especificidade Dupla/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/enzimologia , Transdução de SinaisRESUMO
RATIONALE: Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-ß super family of secreted factors. A recent study showed that reduced GDF11 blood levels with aging was associated with pathological cardiac hypertrophy (PCH) and restoring GDF11 to normal levels in old mice rescued PCH. OBJECTIVE: To determine whether and by what mechanism GDF11 rescues aging dependent PCH. METHODS AND RESULTS: Twenty-four-month-old C57BL/6 mice were given a daily injection of either recombinant (r) GDF11 at 0.1 mg/kg or vehicle for 28 days. rGDF11 bioactivity was confirmed in vitro. After treatment, rGDF11 levels were significantly increased, but there was no significant effect on either heart weight or body weight. Heart weight/body weight ratios of old mice were not different from 8- or 12-week-old animals, and the PCH marker atrial natriuretic peptide was not different in young versus old mice. Ejection fraction, internal ventricular dimension, and septal wall thickness were not significantly different between rGDF11 and vehicle-treated animals at baseline and remained unchanged at 1, 2, and 4 weeks of treatment. There was no difference in myocyte cross-sectional area rGDF11 versus vehicle-treated old animals. In vitro studies using phenylephrine-treated neonatal rat ventricular myocytes, to explore the putative antihypertrophic effects of GDF11, showed that GDF11 did not reduce neonatal rat ventricular myocytes hypertrophy, but instead induced hypertrophy. CONCLUSIONS: Our studies show that there is no age-related PCH in disease-free 24-month-old C57BL/6 mice and that restoring GDF11 in old mice has no effect on cardiac structure or function.
Assuntos
Envelhecimento/patologia , Proteínas Morfogenéticas Ósseas/farmacologia , Cardiomegalia/prevenção & controle , Fatores de Diferenciação de Crescimento/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Fatores Etários , Envelhecimento/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/administração & dosagem , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Células Cultivadas , Esquema de Medicação , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Fatores de Diferenciação de Crescimento/administração & dosagem , Injeções Intraperitoneais , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Recombinantes/farmacologia , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos , Pressão Ventricular/efeitos dos fármacosRESUMO
Protease-activated receptor (PAR)4 is a low affinity thrombin receptor with less understood function relative to PAR1. PAR4 is involved in platelet activation and hemostasis, but its specific actions on myocyte growth and cardiac function remain unknown. This study examined the role of PAR4 deficiency on cardioprotection after myocardial ischemia-reperfusion (IR) injury in mice. When challenged by in vivo or ex vivo IR, PAR4 knockout (KO) mice exhibited increased tolerance to injury, which was manifest as reduced infarct size and a more robust functional recovery compared to wild-type mice. PAR4 KO mice also showed reduced cardiomyocyte apoptosis and putative signaling shifts in survival pathways in response to IR. Inhibition of PAR4 expression in isolated cardiomyocytes by shRNA offered protection against thrombin and PAR4-agonist peptide-induced apoptosis, while overexpression of wild-type PAR4 significantly enhanced the susceptibility of cardiomyocytes to apoptosis, even under low thrombin concentrations. Further studies implicate Src- and epidermal growth factor receptor-dependent activation of JNK on the proapoptotic effect of PAR4 in cardiomyocytes. These findings reveal a pivotal role for PAR4 as a regulator of cardiomyocyte survival and point to PAR4 inhibition as a therapeutic target offering cardioprotection after acute IR injury.
Assuntos
Traumatismo por Reperfusão Miocárdica/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Trombina/genética , Animais , Apoptose/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Peptídeos/farmacologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Trombina/agonistas , Receptores de Trombina/antagonistas & inibidores , Receptores de Trombina/deficiência , Transdução de Sinais , Trombina/farmacologia , Quinases da Família src/genética , Quinases da Família src/metabolismoRESUMO
BACKGROUND: The proto-oncogene Casitas b-lineage lymphoma (c-Cbl) is an adaptor protein with an intrinsic E3 ubiquitin ligase activity that targets receptor and nonreceptor tyrosine kinases, resulting in their ubiquitination and downregulation. However, the function of c-Cbl in the control of cardiac function is currently unknown. In this study, we examined the role of c-Cbl in myocyte death and cardiac function after myocardial ischemia. METHODS AND RESULTS: We show increased c-Cbl expression in human ischemic and dilated cardiomyopathy hearts and in response to pathological stress stimuli in mice. c-Cbl-deficient mice demonstrated a more robust functional recovery after myocardial ischemia/reperfusion injury and significantly reduced myocyte apoptosis and improved cardiac function. Ubiquitination and downregulation of key survival c-Cbl targets, epidermal growth factor receptors and focal adhesion kinase, were significantly reduced in c-Cbl knockout mice. Inhibition of c-Cbl expression or its ubiquitin ligase activity in cardiac myocytes offered protection against H2O2 stress. Interestingly, c-Cbl deletion reduced the risk of death and increased cardiac functional recovery after chronic myocardial ischemia. This beneficial effect of c-Cbl deletion was associated with enhanced neoangiogenesis and increased expression of vascular endothelial growth factor-a and vascular endothelial growth factor receptor type 2 in the infarcted region. CONCLUSIONS: c-Cbl activation promotes myocyte apoptosis, inhibits angiogenesis, and causes adverse cardiac remodeling after myocardial infarction. These findings point to c-Cbl as a potential therapeutic target for the maintenance of cardiac function and remodeling after myocardial ischemia.
Assuntos
Cardiomiopatia Dilatada/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Proteínas Proto-Oncogênicas c-cbl/fisiologia , Adulto , Idoso , Animais , Apoptose/fisiologia , Cateterismo Cardíaco , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Ecocardiografia , Eletrocardiografia , Feminino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-cbl/genética , Ratos , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The neutrophil-derived serine protease, cathepsin G (Cat.G), has been shown to induce myocyte detachment and apoptosis by anoikis through down-regulation of focal adhesion (FA) signaling. However, the mechanisms that control FA protein stability and turnover in myocytes are not well understood. Here, we have shown that the Casitas b-lineage lymphoma (c-Cbl), adaptor protein with an intrinsic E3 ubiquitin ligase activity, is involved in FA and myofibrillar protein stability and turnover in myocytes. Cat.G treatment induced c-Cbl activation and its interaction with FA proteins. Deletion of c-Cbl using c-Cbl knock-out derived myocytes or inhibition of c-Cbl ligase activity significantly reduced FA protein degradation, myofibrillar degeneration, and myocyte apoptosis induced by Cat.G. We also found that inhibition of the proteasome activity, but not the lysosome or the calpain activity, markedly attenuated FA and myofibrillar protein degradation induced by Cat.G. Interestingly, c-Cbl activation induced by Cat.G was mediated through epidermal growth factor receptor (EGFR) transactivation as inhibition of EGFR kinase activity markedly attenuated c-Cbl phosphorylation and FA protein degradation induced by Cat.G. These findings support a model in which neutrophil protease Cat.G promotes c-Cbl interaction with FA proteins, resulting in enhanced c-Cbl-mediated FA protein ubiquitination and degradation, myofibril degradation, and subsequent down-regulation of myocyte survival signaling.
Assuntos
Catepsina G/farmacologia , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Neutrófilos/enzimologia , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Genes erbB-1/genética , Ventrículos do Coração/citologia , Ventrículos do Coração/lesões , Camundongos , Proteínas Musculares/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacosRESUMO
Numerous studies demonstrated increased expression of extracellular matrix (ECM) proteins and activation of focal adhesion (FA) signaling pathways in models of pressure overload-induced cardiac hypertrophy. However, little is known about FA signaling in response to volume overload where cardiac hypertrophy is associated with ECM loss. This study examines the role of beta1-adrenergic receptors (ß(1)-ARs) in FA signaling changes and myocyte apoptosis induced during acute hemodynamic stress of volume overload. Rats with eccentric cardiac hypertrophy induced after aorto-caval fistula (ACF) develop reduced interstitial collagen content and decreased tyrosine phosphorylation of key FA signaling molecules FAK, Pyk(2) and paxillin along with an increase in cardiac myocyte apoptosis. ACF also increased activation of PTEN, a dual lipid and protein phosphatase, and its interaction with FA proteins. ß(1)-AR blockade (extended-release of metoprolol succinate, 100mg QD) markedly attenuated PTEN activation, restored FA signaling and reduced myocyte apoptosis induced by ACF at 2days, but failed to reduce interstitial collagen loss and left ventricular dilatation. Treating cultured myocytes with ß(1)-AR agonists or adenoviral expression of ß(1)-ARs caused PTEN activation and interaction with FA proteins, thus leading to FA signaling downregulation and myocyte apoptosis. Adenoviral-mediated expression of a catalytically inactive PTEN mutant or wild-type FAK restored FA signaling downregulation and attenuated myocyte apoptosis induced by ß(1)-ARs. Collectively, these data show that ß(1)-AR stimulation in response to ACF induces FA signaling downregulation through an ECM-independent mechanism. This effect involves PTEN activation and may contribute to adverse cardiac remodeling and function in the course of volume overload.
Assuntos
Adesões Focais/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Antagonistas Adrenérgicos/farmacologia , Animais , Apoptose/fisiologia , Fístula Artério-Arterial/metabolismo , Western Blotting , Cardiomegalia/genética , Cardiomegalia/metabolismo , Células Cultivadas , Imunoprecipitação , Masculino , PTEN Fosfo-Hidrolase/metabolismo , Artéria Pulmonar/anormalidades , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 1/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Protein kinase D (PKD) exists as a family of structurally related enzymes that are activated through similar phosphorylation-dependent mechanisms involving protein kinase C (PKC). While individual PKD isoforms could in theory mediate distinct biological functions, previous studies identify a high level of functional redundancy for PKD1 and PKD2 in various cellular contexts. This study shows that PKD1 and PKD2 are activated in a stimulus-specific manner in neonatal cardiomyocytes. The α(1)-adrenergic receptor agonist norepinephrine selectively activates PKD1, thrombin and PDGF selectively activate PKD2, and endothelin-1 and PMA activate both PKD1 and PKD2. PKC activity is implicated in the α(1)-adrenergic receptor pathway that activates PKD1 and the thrombin- and PDGF-dependent pathways that activate PKD2. Endothelin-1 activates PKD via both rapid PKC-dependent and more sustained PKC-independent mechanisms. The functional consequences of PKD activation were assessed by tracking phosphorylation of CREB and cardiac troponin I (cTnI), two physiologically relevant PKD substrates in cardiomyocytes. We show that overexpression of an activated PKD1-S744E/S748E transgene increases CREB-Ser(133) and cTnI-Ser(23)/Ser(24) phosphorylation, but agonist-dependent pathways that activate native PKD1 or PKD2 selectively increase CREB-Ser(133) phosphorylation; there is no associated increase in cTnI-Ser(23)/Ser(24) phosphorylation. Gene silencing studies provide unanticipated evidence that PKD1 down-regulation leads to a compensatory increase in PKD2 activity and that down-regulation of PKD1 (alone or in combination with PKD2) leads to an increase in CREB-Ser(133) phosphorylation. Collectively, these studies identify distinct roles for native PKD1 and PKD2 enzymes in stress-dependent pathways that influence cardiac remodeling and the progression of heart failure.
Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Proteínas Musculares/metabolismo , Miócitos Cardíacos/enzimologia , Norepinefrina/farmacologia , Proteína Quinase C/metabolismo , Substituição de Aminoácidos , Animais , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Proteínas Musculares/genética , Mutação de Sentido Incorreto , Miócitos Cardíacos/patologia , Proteína Quinase C/genética , Ratos , Ratos WistarRESUMO
RATIONALE: Myocardial infarction (MI) leads to heart failure (HF) and premature death. The respective roles of myocyte death and depressed myocyte contractility in the induction of HF after MI have not been clearly defined and are the focus of this study. OBJECTIVES: We developed a mouse model in which we could prevent depressed myocyte contractility after MI and used it to test the idea that preventing depression of myocyte Ca(2+)-handling defects could avert post-MI cardiac pump dysfunction. METHODS AND RESULTS: MI was produced in mice with inducible, cardiac-specific expression of the ß2a subunit of the L-type Ca(2+) channel. Myocyte and cardiac function were compared in control and ß2a animals before and after MI. ß2a myocytes had increased Ca(2+) current; sarcoplasmic reticulum Ca(2+) load, contraction and Ca(2+) transients (versus controls), and ß2a hearts had increased performance before MI. After MI, cardiac function decreased. However, ventricular dilation, myocyte hypertrophy and death, and depressed cardiac pump function were greater in ß2a versus control hearts after MI. ß2a animals also had poorer survival after MI. Myocytes isolated from ß2a hearts after MI did not develop depressed Ca(2+) handling, and Ca(2+) current, contractions, and Ca(2+) transients were still above control levels (before MI). CONCLUSIONS: Maintaining myocyte contractility after MI, by increasing Ca(2+) influx, depresses rather than improves cardiac pump function after MI by reducing myocyte number.
Assuntos
Canais de Cálcio Tipo L/fisiologia , Sinalização do Cálcio , Contração Miocárdica/fisiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Animais , Canais de Cálcio Tipo L/deficiência , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/genética , Células Cultivadas , Camundongos , Camundongos Transgênicos , Contração Miocárdica/genética , Infarto do Miocárdio/genética , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologiaRESUMO
BACKGROUND: The left ventricular (LV) dilatation of isolated mitral regurgitation (MR) is associated with an increase in chymase and a decrease in interstitial collagen and extracellular matrix. In addition to profibrotic effects, chymase has significant antifibrotic actions because it activates matrix metalloproteinases and kallikrein and degrades fibronectin. Thus, we hypothesize that chymase inhibitor (CI) will attenuate extracellular matrix loss and LV remodeling in MR. METHODS AND RESULTS: We studied dogs with 4 months of untreated MR (MR; n=9) or MR treated with CI (MR+CI; n=8). Cine MRI demonstrated a >40% increase in LV end-diastolic volume in both groups, consistent with a failure of CI to improve a 25% decrease in interstitial collagen in MR. However, LV cardiomyocyte fractional shortening was decreased in MR versus normal dogs (3.71±0.24% versus 4.81±0.31%; P<0.05) and normalized in MR+CI dogs (4.85±0.44%). MRI with tissue tagging demonstrated an increase in LV torsion angle in MR+CI versus MR dogs. CI normalized the significant decrease in fibronectin and FAK phosphorylation and prevented cardiomyocyte myofibrillar degeneration in MR dogs. In addition, total titin and its stiffer isoform were increased in the LV epicardium and paralleled the changes in fibronectin and FAK phosphorylation in MR+CI dogs. CONCLUSIONS: These results suggest that chymase disrupts cell surface-fibronectin connections and FAK phosphorylation that can adversely affect cardiomyocyte myofibrillar structure and function. The greater effect of CI on epicardial versus endocardial titin and noncollagen cell surface proteins may be responsible for the increase in torsion angle in chronic MR.
Assuntos
Quimases/antagonistas & inibidores , Fibronectinas/metabolismo , Insuficiência da Valva Mitral/fisiopatologia , Miócitos Cardíacos/fisiologia , Miofibrilas/metabolismo , Anormalidade Torcional/fisiopatologia , Remodelação Ventricular/fisiologia , Animais , Pressão Sanguínea/fisiologia , Bradicinina/metabolismo , Débito Cardíaco/fisiologia , Colágeno/metabolismo , Cães , Matriz Extracelular/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Frequência Cardíaca/fisiologia , Masculino , Insuficiência da Valva Mitral/metabolismo , Modelos Animais , Miócitos Cardíacos/citologia , Anormalidade Torcional/metabolismoRESUMO
RATIONALE: Pathological cardiac myocyte hypertrophy is thought to be induced by the persistent increases in intracellular Ca(2+) needed to maintain cardiac function when systolic wall stress is increased. Hypertrophic Ca(2+) binds to calmodulin (CaM) and activates the phosphatase calcineurin (Cn) and CaM kinase (CaMK)II. Cn dephosphorylates cytoplasmic NFAT (nuclear factor of activated T cells), inducing its translocation to the nucleus where it activates antiapoptotic and hypertrophic target genes. Cytoplasmic CaMKII regulates Ca(2+) handling proteins but whether or not it is directly involved in hypertrophic and survival signaling is not known. OBJECTIVE: This study explored the hypothesis that cytoplasmic CaMKII reduces NFAT nuclear translocation by inhibiting the phosphatase activity of Cn. METHODS AND RESULTS: Green fluorescent protein-tagged NFATc3 was used to determine the cellular location of NFAT in cultured neonatal rat ventricular myocytes (NRVMs) and adult feline ventricular myocytes. Constitutively active (CaMKII-CA) or dominant negative (CaMKII-DN) mutants of cytoplasmic targeted CaMKII(deltac) were used to activate and inhibit cytoplasmic CaMKII activity. In NRVM CaMKII-DN (48.5+/-3%, P<0.01 versus control) increased, whereas CaMKII-CA decreased (5.9+/-1%, P<0.01 versus control) NFAT nuclear translocation (Control: 12.3+/-1%). Cn inhibitors were used to show that these effects were caused by modulation of Cn activity. Increasing Ca(2+) increased Cn-dependent NFAT translocation (to 71.7+/-7%, P<0.01) and CaMKII-CA reduced this effect (to 17.6+/-4%). CaMKII-CA increased TUNEL and caspase-3 activity (P<0.05). CaMKII directly phosphorylated Cn at Ser197 in CaMKII-CA infected NRVMs and in hypertrophied feline hearts. CONCLUSION: These data show that activation of cytoplasmic CaMKII inhibits NFAT nuclear translocation by phosphorylation and subsequent inhibition of Cn.
Assuntos
Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Núcleo Celular/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transporte Ativo do Núcleo Celular/genética , Animais , Calcineurina/genética , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Calmodulina/genética , Calmodulina/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Caspase 3/genética , Caspase 3/metabolismo , Gatos , Núcleo Celular/genética , Citoplasma/genética , Citoplasma/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Células K562 , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/genética , Fosforilação/genética , Ratos , Ratos Sprague-DawleyRESUMO
ß1-adrenergic receptor (ß1AR)-mediated transactivation of epidermal growth factor receptor (EGFR) engages downstream signaling events that impact numerous cellular processes including growth and survival. While association of these receptors has been shown to occur basally and be important for relaying transactivation-specific intracellular events, the mechanism by which they do so is unclear and elucidation of which would aid in understanding the consequence of disrupting their interaction. Using fluorescence resonance energy transfer (FRET) and immunoprecipitation (IP) analyses, we evaluated the impact of C-terminal truncations of EGFR on its ability to associate with ß1AR. While loss of the last 230 amino acid C-terminal phosphotyrosine-rich domain did not disrupt the ability of EGFR to associate with ß1AR, truncation of the entire intracellular domain of EGFR resulted in almost complete loss of its interaction with ß1AR, suggesting that either the kinase domain or juxtamembrane domain (JMD) may be required for this association. Treatment with the EGFR antagonist gefitinib did not prevent ß1AR-EGFR association, however, treatment with a palmitoylated peptide encoding the first 20 amino acids of the JMD domain (JMD-A) disrupted ß1AR-EGFR association over time and prevented ß1AR-mediated ERK1/2 phosphorylation, both in general and specifically in association with EGFR. Conversely, neither a mutated JMD-A peptide nor a palmitoylated peptide fragment consisting of the subsequent 18 amino acids of the JMD domain (JMD-B) were capable of doing so. Altogether, the proximal region of the JMD of EGFR is responsible for its association with ß1AR, and its disruption prevents ß1AR-mediated transactivation, thus providing a new tool to study the functional consequences of disrupting ß1AR-EGFR downstream signaling.