Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 297(6): H2015-25, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19783773

RESUMO

cAMP inhibits proliferation in most cell types, triggering different and sometimes opposing molecular pathways. p85alpha (phosphatidylinositol 3-kinase regulatory subunit) is phosphorylated by cAMP/PKA in certain cell lineages, but its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are unknown. In the present study, we evaluated 1) the role of p85alpha in the integration of cAMP/PKA-dependent signaling on the regulation of VSMC and EC growth in vitro; and 2) the effects of PKA-modified p85alpha on neointimal hyperplasia and endothelial healing after balloon injury in vivo. Plasmid constructs carrying wild-type and PKA-modified p85alpha were employed in VSMCs and ECs in vitro and after balloon injury in rat carotid arteries in vivo. cAMP/PKA reduced VSMC proliferation through p85alpha phosphorylation. Transfected PKA-activated p85alpha binds p21ras, reducing ERK1/2 activation and VSMC proliferation in vitro. In contrast, EC proliferation inhibition by cAMP is independent from PKA modification of p85alpha and ERK1/2 inhibition; indeed, PKA-activated p85alpha did not inhibit per se ERK1/2 activation and proliferation in ECs in vitro. Interestingly, cAMP reduced both VSMC and EC apoptotic death through p85alpha phosphorylation. Accordingly, PKA-activated p85alpha triggered Akt activation, reducing both VSMC and EC apoptosis in vitro. Finally, compared with controls, vascular gene transfer of PKA-activated p85alpha significantly reduced neointimal formation after balloon injury in rats, without inhibiting endothelial regeneration of the injured arterial segment. In conclusions, PKA-activated p85alpha integrates cAMP/PKA signaling differently in VSMCs and ECs. By reducing neointimal hyperplasia without inhibiting endothelial regeneration, it exerts a protective effect against restenosis after balloon injury.


Assuntos
Lesões das Artérias Carótidas/enzimologia , Proliferação de Células , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Células Endoteliais/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Animais , Apoptose , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Cateterismo , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Ativação Enzimática , Hiperplasia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transfecção , Proteínas ras/metabolismo
2.
Cell Death Differ ; 24(12): 2101-2116, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28800128

RESUMO

Multipotent adult resident cardiac stem cells (CSCs) were first identified by the expression of c-kit, the stem cell factor receptor. However, in the adult myocardium c-kit alone cannot distinguish CSCs from other c-kit-expressing (c-kitpos) cells. The adult heart indeed contains a heterogeneous mixture of c-kitpos cells, mainly composed of mast and endothelial/progenitor cells. This heterogeneity of cardiac c-kitpos cells has generated confusion and controversy about the existence and role of CSCs in the adult heart. Here, to unravel CSC identity within the heterogeneous c-kit-expressing cardiac cell population, c-kitpos cardiac cells were separated through CD45-positive or -negative sorting followed by c-kitpos sorting. The blood/endothelial lineage-committed (Lineagepos) CD45posc-kitpos cardiac cells were compared to CD45neg(Lineageneg/Linneg) c-kitpos cardiac cells for stemness and myogenic properties in vitro and in vivo. The majority (~90%) of the resident c-kitpos cardiac cells are blood/endothelial lineage-committed CD45posCD31posc-kitpos cells. In contrast, the LinnegCD45negc-kitpos cardiac cell cohort, which represents ⩽10% of the total c-kitpos cells, contain all the cardiac cells with the properties of adult multipotent CSCs. These characteristics are absent from the c-kitneg and the blood/endothelial lineage-committed c-kitpos cardiac cells. Single Linnegc-kitpos cell-derived clones, which represent only 1-2% of total c-kitpos myocardial cells, when stimulated with TGF-ß/Wnt molecules, acquire full transcriptome and protein expression, sarcomere organisation, spontaneous contraction and electrophysiological properties of differentiated cardiomyocytes (CMs). Genetically tagged cloned progeny of one Linnegc-kitpos cell when injected into the infarcted myocardium, results in significant regeneration of new CMs, arterioles and capillaries, derived from the injected cells. The CSC's myogenic regenerative capacity is dependent on commitment to the CM lineage through activation of the SMAD2 pathway. Such regeneration was not apparent when blood/endothelial lineage-committed c-kitpos cardiac cells were injected. Thus, among the cardiac c-kitpos cell cohort only a very small fraction has the phenotype and the differentiation/regenerative potential characteristics of true multipotent CSCs.


Assuntos
Células-Tronco Adultas/enzimologia , Células-Tronco Multipotentes/enzimologia , Miocárdio/enzimologia , Proteínas Proto-Oncogênicas c-kit/biossíntese , Células-Tronco Adultas/citologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Masculino , Camundongos , Células-Tronco Multipotentes/citologia , Miocárdio/citologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa