Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Biophys J ; 121(8): 1395-1416, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35314141

RESUMO

Kv2 voltage-gated potassium channels are modulated by amphoterin-induced gene and open reading frame (AMIGO) neuronal adhesion proteins. Here, we identify steps in the conductance activation pathway of Kv2.1 channels that are modulated by AMIGO1 using voltage-clamp recordings and spectroscopy of heterologously expressed Kv2.1 and AMIGO1 in mammalian cell lines. AMIGO1 speeds early voltage-sensor movements and shifts the gating charge-voltage relationship to more negative voltages. The gating charge-voltage relationship indicates that AMIGO1 exerts a larger energetic effect on voltage-sensor movement than is apparent from the midpoint of the conductance-voltage relationship. When voltage sensors are detained at rest by voltage-sensor toxins, AMIGO1 has a greater impact on the conductance-voltage relationship. Fluorescence measurements from voltage-sensor toxins bound to Kv2.1 indicate that with AMIGO1, the voltage sensors enter their earliest resting conformation, yet this conformation is less stable upon voltage stimulation. We conclude that AMIGO1 modulates the Kv2.1 conductance activation pathway by destabilizing the earliest resting state of the voltage sensors.


Assuntos
Ativação do Canal Iônico , Canais de Potássio Shab , Animais , Linhagem Celular , Mamíferos/metabolismo , Neurônios/metabolismo , Canais de Potássio Shab/metabolismo
2.
Mol Pharmacol ; 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36041862

RESUMO

A drug that blocks the cardiac myocyte voltage-gated K+ channels encoded by the human Ether-à-go-go-Related Gene (hERG) carries a potential risk of long QT syndrome and life-threatening cardiac arrhythmia, including Torsade de Points Interestingly, certain hERG blockers can also facilitate hERG activation to increase hERG currents, which may reduce proarrhythmic potential. However, the molecular mechanism involved in the facilitation effect of hERG blockers remains unclear. The hallmark feature of the facilitation effect by hERG blockers is that a depolarizing preconditioning pulse shifts voltage-dependence of hERG activation to more negative voltages. Here we utilize a D540K hERG mutant to study the mechanism of the facilitation effect. D540K hERG is activated by not only depolarization but also hyperpolarization. This unusual gating property enables tests of the mechanism by which voltage induces facilitation of hERG by blockers. With D540K hERG, we find that nifekalant, a hERG blocker and Class III antiarrhythmic agent, blocks and facilitates not only current activation by depolarization but also current activation by hyperpolarization, suggesting a shared gating process upon depolarization and hyperpolarization. Moreover, in response to hyperpolarizing conditioning pulses, nifekalant facilitates D540K hERG currents but not wild-type currents. Our results indicate that induction of facilitation is coupled to pore opening, not voltage per se We propose that gated access to the hERG central cavity underlies the voltage-dependence of induction of facilitation. This study identifies hERG channel pore gate opening as the conformational change facilitated by nifekalant, a clinically important antiarrhythmic agent. Significance Statement Nifekalant is a clinically important antiarrhythmic agent and a hERG blocker which can also facilitate voltage-dependent activation of hERG channels after a preconditioning pulse. Here we show that the mechanism of action of the preconditioning pulse is to open a conductance gate to enable drug access to a facilitation site. Moreover, we find that facilitation increases hERG currents by altering pore dynamics, rather than acting through voltage sensors.

3.
J Mol Cell Cardiol ; 158: 163-177, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062207

RESUMO

Drug isomers may differ in their proarrhythmia risk. An interesting example is the drug sotalol, an antiarrhythmic drug comprising d- and l- enantiomers that both block the hERG cardiac potassium channel and confer differing degrees of proarrhythmic risk. We developed a multi-scale in silico pipeline focusing on hERG channel - drug interactions and used it to probe and predict the mechanisms of pro-arrhythmia risks of the two enantiomers of sotalol. Molecular dynamics (MD) simulations predicted comparable hERG channel binding affinities for d- and l-sotalol, which were validated with electrophysiology experiments. MD derived thermodynamic and kinetic parameters were used to build multi-scale functional computational models of cardiac electrophysiology at the cell and tissue scales. Functional models were used to predict inactivated state binding affinities to recapitulate electrocardiogram (ECG) QT interval prolongation observed in clinical data. Our study demonstrates how modeling and simulation can be applied to predict drug effects from the atom to the rhythm for dl-sotalol and also increased proarrhythmia proclivity of d- vs. l-sotalol when accounting for stereospecific beta-adrenergic receptor blocking.


Assuntos
Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/metabolismo , Antiarrítmicos/química , Antiarrítmicos/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Síndrome do QT Longo/metabolismo , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sotalol/química , Sotalol/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Antiarrítmicos/farmacologia , Microscopia Crioeletrônica/métodos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/química , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ligação Proteica/efeitos dos fármacos , Sotalol/farmacologia , Estereoisomerismo
4.
Biochemistry ; 57(18): 2733-2743, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29616558

RESUMO

Drugs do not act solely by canonical ligand-receptor binding interactions. Amphiphilic drugs partition into membranes, thereby perturbing bulk lipid bilayer properties and possibly altering the function of membrane proteins. Distinguishing membrane perturbation from more direct protein-ligand interactions is an ongoing challenge in chemical biology. Herein, we present one strategy for doing so, using dimeric 6-bromo-2-mercaptotryptamine (BrMT) and synthetic analogues. BrMT is a chemically unstable marine snail toxin that has unique effects on voltage-gated K+ channel proteins, making it an attractive medicinal chemistry lead. BrMT is amphiphilic and perturbs lipid bilayers, raising the question of whether its action against K+ channels is merely a manifestation of membrane perturbation. To determine whether medicinal chemistry approaches to improve BrMT might be viable, we synthesized BrMT and 11 analogues and determined their activities in parallel assays measuring K+ channel activity and lipid bilayer properties. Structure-activity relationships were determined for modulation of the Kv1.4 channel, bilayer partitioning, and bilayer perturbation. Neither membrane partitioning nor bilayer perturbation correlates with K+ channel modulation. We conclude that BrMT's membrane interactions are not critical for its inhibition of Kv1.4 activation. Further, we found that alkyl or ether linkages can replace the chemically labile disulfide bond in the BrMT pharmacophore, and we identified additional regions of the scaffold that are amenable to chemical modification. Our work demonstrates a strategy for determining if drugs act by specific interactions or bilayer-dependent mechanisms, and chemically stable modulators of Kv1 channels are reported.


Assuntos
Canal de Potássio Kv1.4/química , Bicamadas Lipídicas/química , Caramujos/química , Triptaminas/química , Sequência de Aminoácidos , Animais , Humanos , Ligantes , Ligação Proteica , Relação Estrutura-Atividade , Xenopus laevis
6.
Proc Natl Acad Sci U S A ; 111(44): E4789-96, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25331865

RESUMO

Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX-fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling.


Assuntos
Proteínas de Artrópodes/farmacologia , Dendrímeros/farmacologia , Corantes Fluorescentes/farmacologia , Canais de Potássio Shab/metabolismo , Transdução de Sinais/efeitos dos fármacos , Venenos de Aranha/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Ativação do Canal Iônico , Ligação Proteica , Canais de Potássio Shab/genética
7.
J Biol Chem ; 290(49): 29189-201, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26442584

RESUMO

The plasma membrane (PM) comprises distinct subcellular domains with diverse functions that need to be dynamically coordinated with intracellular events, one of the most impactful being mitosis. The Kv2.1 voltage-gated potassium channel is conditionally localized to large PM clusters that represent specialized PM:endoplasmic reticulum membrane contact sites (PM:ER MCS), and overexpression of Kv2.1 induces more exuberant PM:ER MCS in neurons and in certain heterologous cell types. Localization of Kv2.1 at these contact sites is dynamically regulated by changes in phosphorylation at one or more sites located on its large cytoplasmic C terminus. Here, we show that Kv2.1 expressed in COS-1 cells undergoes dramatic cell cycle-dependent changes in its PM localization, having diffuse localization in interphase cells, and robust clustering during M phase. The mitosis-specific clusters of Kv2.1 are localized to PM:ER MCS, and M phase clustering of Kv2.1 induces more extensive PM:ER MCS. These cell cycle-dependent changes in Kv2.1 localization and the induction of PM:ER MCS are accompanied by increased mitotic Kv2.1 phosphorylation at several C-terminal phosphorylation sites. Phosphorylation of exogenously expressed Kv2.1 is significantly increased upon metaphase arrest in COS-1 and CHO cells, and in a pancreatic ß cell line that express endogenous Kv2.1. The M phase clustering of Kv2.1 at PM:ER MCS in COS-1 cells requires the same C-terminal targeting motif needed for conditional Kv2.1 clustering in neurons. The cell cycle-dependent changes in localization and phosphorylation of Kv2.1 were not accompanied by changes in the electrophysiological properties of Kv2.1 expressed in CHO cells. Together, these results provide novel insights into the cell cycle-dependent changes in PM protein localization and phosphorylation.


Assuntos
Ciclo Celular , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Canais de Potássio Shab/metabolismo , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Citoplasma/metabolismo , Células HEK293 , Humanos , Células Secretoras de Insulina/metabolismo , Microscopia de Fluorescência , Mitose , Neurônios/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Ratos
8.
Proc Natl Acad Sci U S A ; 115(21): 5311-5313, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735705
9.
J Physiol ; 593(6): 1347-60, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25772290

RESUMO

This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation-contraction coupling and arrhythmias: Na(+) channel and Na(+) transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na(+) channel function and regulation, Na(+) channel structure and function, and Na(+) channel trafficking, sequestration and complexing.


Assuntos
Miócitos Cardíacos/metabolismo , Canais de Sódio/metabolismo , Potenciais de Ação , Sequência de Aminoácidos , Animais , Congressos como Assunto , Humanos , Dados de Sequência Molecular , Miócitos Cardíacos/efeitos dos fármacos , Transporte Proteico , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/química
10.
J Comp Neurol ; 532(2): e25575, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335058

RESUMO

The distinct organization of Kv2 voltage-gated potassium channels on and near the cell body of brain neurons enables their regulation of action potentials and specialized membrane contact sites. Somatosensory neurons have a pseudounipolar morphology and transmit action potentials from peripheral nerve endings through axons that bifurcate to the spinal cord and the cell body within ganglia including the dorsal root ganglia (DRG). Kv2 channels regulate action potentials in somatosensory neurons, yet little is known about where Kv2 channels are located. Here, we define the cellular and subcellular localization of the Kv2 paralogs, Kv2.1 and Kv2.2, in DRG somatosensory neurons with a panel of antibodies, cell markers, and genetically modified mice. We find that relative to spinal cord neurons, DRG neurons have similar levels of detectable Kv2.1 and higher levels of Kv2.2. In older mice, detectable Kv2.2 remains similar, while detectable Kv2.1 decreases. Both Kv2 subtypes adopt clustered subcellular patterns that are distinct from central neurons. Most DRG neurons co-express Kv2.1 and Kv2.2, although neuron subpopulations show preferential expression of Kv2.1 or Kv2.2. We find that Kv2 protein expression and subcellular localization are similar between mouse and human DRG neurons. We conclude that the organization of both Kv2 channels is consistent with physiological roles in the somata and stem axons of DRG neurons. The general prevalence of Kv2.2 in DRG as compared to central neurons and the enrichment of Kv2.2 relative to detectable Kv2.1 in older mice, proprioceptors, and axons suggest more widespread roles for Kv2.2 in DRG neurons.


Assuntos
Axônios , Gânglios Espinais , Camundongos , Humanos , Animais , Potenciais de Ação , Células Receptoras Sensoriais/fisiologia
11.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38352561

RESUMO

KvS proteins are voltage-gated potassium channel subunits that form functional channels when assembled into heterotetramers with Kv2.1 ( KCNB1 ) or Kv2.2 ( KCNB2 ). Mammals have 10 KvS subunits: Kv5.1 ( KCNF1 ), Kv6.1 ( KCNG1 ), Kv6.2 ( KCNG2 ), Kv6.3 ( KCNG3 ), Kv6.4 ( KCNG4 ), Kv8.1 ( KCNV1 ), Kv8.2 ( KCNV2 ), Kv9.1 ( KCNS1 ), Kv9.2 ( KCNS2 ), and Kv9.3 ( KCNS3 ). Electrically excitable cells broadly express channels containing Kv2 subunits and most neurons have substantial Kv2 conductance. However, whether KvS subunits contribute to these conductances has not been clear, leaving the physiological roles of KvS subunits poorly understood. Here, we identify that two potent Kv2 inhibitors, used in combination, can distinguish conductances of Kv2/KvS channels and Kv2-only channels. We find that Kv5, Kv6, Kv8, or Kv9-containing channels are resistant to the Kv2-selective pore-blocker RY785 yet remain sensitive to the Kv2-selective voltage sensor modulator guangxitoxin-1E (GxTX). Using these inhibitors in mouse superior cervical ganglion neurons, we find that little of the Kv2 conductance is carried by KvS-containing channels. In contrast, conductances consistent with KvS-containing channels predominate over Kv2-only channels in mouse and human dorsal root ganglion neurons. These results establish an approach to pharmacologically distinguish conductances of Kv2/KvS heteromers from Kv2-only channels, enabling investigation of the physiological roles of endogenous KvS subunits. These findings suggest that drugs targeting KvS subunits could modulate electrical activity of subsets of Kv2-expressing cell types.

12.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328147

RESUMO

Voltage-gated K+ channels of the Kv2 family are highly expressed in brain and play dual roles in regulating neuronal excitability and in organizing endoplasmic reticulum - plasma membrane (ER-PM) junctions. Studies in heterologous cells suggest that the two pore-forming alpha subunits Kv2.1 and Kv2.2 assemble with "electrically silent" KvS subunits to form heterotetrameric channels with distinct biophysical properties. Here, using mass spectrometry-based proteomics, we identified five KvS subunits as components of native Kv2.1 channels immunopurified from mouse brain, the most abundant being Kv5.1. We found that Kv5.1 co-immunoprecipitates with Kv2.1 and to a lesser extent with Kv2.2 from brain lysates, and that Kv5.1 protein levels are decreased by 70% in Kv2.1 knockout mice and 95% in Kv2.1/2.2 double knockout mice. Multiplex immunofluorescent labelling of rodent brain sections revealed that in neocortex Kv5.1 immunolabeling is apparent in a large percentage of Kv2.1 and Kv2.2-positive layer 2/3 neurons, and in a smaller percentage of layer 5 and 6 neurons. At the subcellular level, Kv5.1 is co-clustered with Kv2.1 and Kv2.2 at ER-PM junctions in cortical neurons, although clustering of Kv5.1-containing channels is reduced relative to homomeric Kv2 channels. We also found that in heterologous cells coexpression with Kv5.1 reduces the clustering and alters the pharmacological properties of Kv2.1 channels. Together, these findings demonstrate that the Kv5.1 electrically silent subunit is a component of a substantial fraction of native brain Kv2 channels, and that its incorporation into heteromeric channels can impact diverse aspects of Kv2 channel function.

13.
bioRxiv ; 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38187582

RESUMO

The distinct organization of Kv2 voltage-gated potassium channels on and near the cell body of brain neurons enables their regulation of action potentials and specialized membrane contact sites. Somatosensory neurons have a pseudounipolar morphology and transmit action potentials from peripheral nerve endings through axons that bifurcate to the spinal cord and the cell body within ganglia including the dorsal root ganglia (DRG). Kv2 channels regulate action potentials in somatosensory neurons, yet little is known about where Kv2 channels are located. Here we define the cellular and subcellular localization of the Kv2 paralogs, Kv2.1 and Kv2.2, in DRG somatosensory neurons with a panel of antibodies, cell markers, and genetically modified mice. We find that relative to spinal cord neurons, DRG neurons have similar levels of detectable Kv2.1, and higher levels of Kv2.2. In older mice, detectable Kv2.2 remains similar while detectable Kv2.1 decreases. Both Kv2 subtypes adopt clustered subcellular patterns that are distinct from central neurons. Most DRG neurons co-express Kv2.1 and Kv2.2, although neuron subpopulations show preferential expression of Kv2.1 or Kv2.2. We find that Kv2 protein expression and subcellular localization is similar between mouse and human DRG neurons. We conclude that the organization of both Kv2 channels is consistent with physiological roles in the somata and stem axons of DRG neurons. The general prevalence of Kv2.2 in DRG as compared to central neurons and the enrichment of Kv2.2 relative to detectable Kv2.1, in older mice, proprioceptors, and axons suggest more widespread roles for Kv2.2 in DRG neurons.

14.
Front Pharmacol ; 14: 1156855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007002

RESUMO

The voltage-gated sodium (NaV) channel subtype NaV1.7 plays a critical role in pain signaling, making it an important drug target. Here we studied the molecular interactions between µ-Conotoxin KIIIA (KIIIA) and the human NaV1.7 channel (hNaV1.7). We developed a structural model of hNaV1.7 using Rosetta computational modeling and performed in silico docking of KIIIA using RosettaDock to predict residues forming specific pairwise contacts between KIIIA and hNaV1.7. We experimentally validated these contacts using mutant cycle analysis. Comparison between our KIIIA-hNaV1.7 model and the cryo-EM structure of KIIIA-hNaV1.2 revealed key similarities and differences between NaV channel subtypes with potential implications for the molecular mechanism of toxin block. The accuracy of our integrative approach, combining structural data with computational modeling, experimental validation, and molecular dynamics simulations, suggests that Rosetta structural predictions will be useful for rational design of novel biologics targeting specific NaV channels.

15.
Front Pharmacol ; 14: 1244166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035013

RESUMO

The human ether-a-go-go-related gene (hERG) not only encodes a potassium-selective voltage-gated ion channel essential for normal electrical activity in the heart but is also a major drug anti-target. Genetic hERG mutations and blockage of the channel pore by drugs can cause long QT syndrome, which predisposes individuals to potentially deadly arrhythmias. However, not all hERG-blocking drugs are proarrhythmic, and their differential affinities to discrete channel conformational states have been suggested to contribute to arrhythmogenicity. We used Rosetta electron density refinement and homology modeling to build structural models of open-state hERG channel wild-type and mutant variants (Y652A, F656A, and Y652A/F656 A) and a closed-state wild-type channel based on cryo-electron microscopy structures of hERG and EAG1 channels. These models were used as protein targets for molecular docking of charged and neutral forms of amiodarone, nifekalant, dofetilide, d/l-sotalol, flecainide, and moxifloxacin. We selected these drugs based on their different arrhythmogenic potentials and abilities to facilitate hERG current. Our docking studies and clustering provided atomistic structural insights into state-dependent drug-channel interactions that play a key role in differentiating safe and harmful hERG blockers and can explain hERG channel facilitation through drug interactions with its open-state hydrophobic pockets.

17.
J Gen Physiol ; 154(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35435946

RESUMO

Understanding the mechanism by which ion channel modulators act is critical for interpretation of their physiological effects and can provide insight into mechanisms of ion channel gating. The small molecule RY785 is a potent and selective inhibitor of Kv2 voltage-gated K+ channels that has a use-dependent onset of inhibition. Here, we investigate the mechanism of RY785 inhibition of rat Kv2.1 (Kcnb1) channels heterologously expressed in CHO-K1 cells. We find that 1 µM RY785 block eliminates Kv2.1 current at all physiologically relevant voltages, inhibiting ≥98% of the Kv2.1 conductance. Both onset of and recovery from RY785 inhibition require voltage sensor activation. Intracellular tetraethylammonium, a classic open-channel blocker, competes with RY785 inhibition. However, channel opening itself does not appear to alter RY785 access. Gating current measurements reveal that RY785 inhibits a component of voltage sensor activation and accelerates voltage sensor deactivation. We propose that voltage sensor activation opens a path into the central cavity of Kv2.1 where RY785 binds and promotes voltage sensor deactivation, trapping itself inside. This gated-access mechanism in conjunction with slow kinetics of unblock supports simple interpretation of RY785 effects: channel activation is required for block by RY785 to equilibrate, after which trapped RY785 will simply decrease the Kv2 conductance density.


Assuntos
Ativação do Canal Iônico , Canais de Potássio Shab , Animais , Células CHO , Cricetinae , Cricetulus , Ativação do Canal Iônico/fisiologia , Cinética , Ratos , Canais de Potássio Shab/metabolismo
18.
Front Pharmacol ; 13: 966463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188564

RESUMO

The voltage-gated potassium channel, KV11.1, encoded by the human Ether-à-go-go-Related Gene (hERG), is expressed in cardiac myocytes, where it is crucial for the membrane repolarization of the action potential. Gating of the hERG channel is characterized by rapid, voltage-dependent, C-type inactivation, which blocks ion conduction and is suggested to involve constriction of the selectivity filter. Mutations S620T and S641A/T within the selectivity filter region of hERG have been shown to alter the voltage dependence of channel inactivation. Because hERG channel blockade is implicated in drug-induced arrhythmias associated with both the open and inactivated states, we used Rosetta to simulate the effects of hERG S620T and S641A/T mutations to elucidate conformational changes associated with hERG channel inactivation and differences in drug binding between the two states. Rosetta modeling of the S641A fast-inactivating mutation revealed a lateral shift of the F627 side chain in the selectivity filter into the central channel axis along the ion conduction pathway and the formation of four lateral fenestrations in the pore. Rosetta modeling of the non-inactivating mutations S620T and S641T suggested a potential molecular mechanism preventing F627 side chain from shifting into the ion conduction pathway during the proposed inactivation process. Furthermore, we used Rosetta docking to explore the binding mechanism of highly selective and potent hERG blockers - dofetilide, terfenadine, and E4031. Our structural modeling correlates well with much, but not all, existing experimental evidence involving interactions of hERG blockers with key residues in hERG pore and reveals potential molecular mechanisms of ligand interactions with hERG in an inactivated state.

19.
Elife ; 112022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576241

RESUMO

The voltage-gated sodium NaV1.7 channel plays a key role as a mediator of action potential propagation in C-fiber nociceptors and is an established molecular target for pain therapy. ProTx-II is a potent and moderately selective peptide toxin from tarantula venom that inhibits human NaV1.7 activation. Here we used available structural and experimental data to guide Rosetta design of potent and selective ProTx-II-based peptide inhibitors of human NaV1.7 channels. Functional testing of designed peptides using electrophysiology identified the PTx2-3127 and PTx2-3258 peptides with IC50s of 7 nM and 4 nM for hNaV1.7 and more than 1000-fold selectivity over human NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.8, and NaV1.9 channels. PTx2-3127 inhibits NaV1.7 currents in mouse and human sensory neurons and shows efficacy in rat models of chronic and thermal pain when administered intrathecally. Rationally designed peptide inhibitors of human NaV1.7 channels have transformative potential to define a new class of biologics to treat pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Dor , Peptídeos , Bloqueadores do Canal de Sódio Disparado por Voltagem , Animais , Humanos , Camundongos , Ratos , Nociceptores , Dor/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/química , Venenos de Aranha/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Desenho de Fármacos
20.
Methods Enzymol ; 653: 295-318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34099176

RESUMO

Voltage gated ion channels (VGICs) shape the electrical character of cells by undergoing structural changes in response to membrane depolarization. High-resolution techniques have provided a wealth of data on individual VGIC structures, but the conformational changes of endogenous channels in live cell membranes have remained unexplored. Here, we describe methods for imaging structural changes of voltage-gated K+ channels in living cells, using peptidyl toxins labeled with fluorophores that report specific protein conformations. These Endogenous Voltage-sensor Activity Probes (EVAPs) enable study of both VGIC allostery and function in the context of endogenous live-cell membranes under different physiological states. In this chapter, we describe methods for the synthesis, imaging, and analysis of dynamic EVAPs, which can report K+ channel activity in complex tissue preparations via 2-photon excitation microscopy, and environment-sensitive EVAPs, which report voltage-dependent conformational changes at the VGIC-toxin interface. The methods here present the utility of current EVAPs and lay the groundwork for the development of other probes that act by similar mechanisms. EVAPs can be correlated with electrophysiology, offering insight into the molecular details of endogenous channel function and allostery in live cells. This enables investigation of conformational changes of channels in their native, functional states, putting structures and models into a context of live-cell membranes. The expansive array of state-dependent ligands and optical probes should enable probes more generally for investigating the molecular motions of endogenous proteins.


Assuntos
Ativação do Canal Iônico , Transdução de Sinais , Membrana Celular , Canais Iônicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa