Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 292(11): 4499-4518, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28100784

RESUMO

O-Linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAcylation of target proteins and regulates numerous biological processes. OGT is encoded by a single gene that yields nucleocytosolic and mitochondrial isoforms. To date, the role of the mitochondrial isoform of OGT (mOGT) remains largely unknown. Using high throughput proteomics, we identified 84 candidate mitochondrial glycoproteins, of which 44 are novel. Notably, two of the candidate glycoproteins identified (cytochrome oxidase 2 (COX2) and NADH:ubiquinone oxidoreductase core subunit 4 (MT-ND4)) are encoded by mitochondrial DNA. Using siRNA in HeLa cells, we found that reducing endogenous mOGT expression leads to alterations in mitochondrial structure and function, including Drp1-dependent mitochondrial fragmentation, reduction in mitochondrial membrane potential, and a significant loss of mitochondrial content in the absence of mitochondrial ROS. These defects are associated with a compensatory increase in oxidative phosphorylation per mitochondrion. mOGT is also critical for cell survival; siRNA-mediated knockdown of endogenous mOGT protected cells against toxicity mediated by rotenone, a complex I inhibitor. Conversely, reduced expression of both nucleocytoplasmic (ncOGT) and mitochondrial (mOGT) OGT isoforms is associated with increased mitochondrial respiration and elevated glycolysis, suggesting that ncOGT is a negative regulator of cellular bioenergetics. Last, we determined that mOGT is probably involved in the glycosylation of a restricted set of mitochondrial targets. We identified four proteins implicated in mitochondrial biogenesis and metabolism regulation as candidate substrates of mOGT, including leucine-rich PPR-containing protein and mitochondrial aconitate hydratase. Our findings suggest that mOGT is catalytically active in vivo and supports mitochondrial structure, health, and survival, whereas ncOGT predominantly regulates cellular bioenergetics.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Sobrevivência Celular , Glicólise , Glicosilação , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , N-Acetilglucosaminiltransferases/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Especificidade por Substrato
2.
J Cereb Blood Flow Metab ; 42(1): 145-161, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465229

RESUMO

Transient increases in intracellular Ca2+ activate endothelium-dependent vasodilatory pathways. This process is impaired in cerebral amyloid angiopathy, where amyloid-ß(1-40) accumulates around blood vessels. In neurons, amyloid-ß impairs the Ca2+-permeable N-methyl-D-aspartate receptor (NMDAR), a mediator of endothelium-dependent dilation in arteries. We hypothesized that amyloid-ß(1-40) reduces NMDAR-elicited Ca2+ signals in mouse cerebral artery endothelial cells, blunting dilation. Cerebral arteries isolated from 4-5 months-old, male and female cdh5:Gcamp8 mice were used for imaging of unitary Ca2+ influx through NMDAR (NMDAR sparklets) and intracellular Ca2+ transients. The NMDAR agonist NMDA (10 µmol/L) increased frequency of NMDAR sparklets and intracellular Ca2+ transients in endothelial cells; these effects were prevented by NMDAR antagonists D-AP5 and MK-801. Next, we tested if amyloid-ß(1-40) impairs NMDAR-elicited Ca2+ transients. Cerebral arteries incubated with amyloid-ß(1-40) (5 µmol/L) exhibited reduced NMDAR sparklets and intracellular Ca2+ transients. Lastly, we observed that NMDA-induced dilation of pial arteries is reduced by acute intraluminal amyloid-ß(1-40), as well as in a mouse model of Alzheimer's disease, the 5x-FAD, linked to downregulation of Grin1 mRNA compared to wild-type littermates. These data suggest that endothelial NMDAR mediate dilation via Ca2+-dependent pathways, a process disrupted by amyloid-ß(1-40) and impaired in 5x-FAD mice.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Artérias Cerebrais/metabolismo , Endotélio Vascular/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Receptores de N-Metil-D-Aspartato/genética
3.
PLoS One ; 9(4): e93896, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24709986

RESUMO

We previously performed an RNA interference (RNAi) screen and found that the knockdown of the catalytically inactive phosphatase, MK-STYX [MAPK (mitogen-activated protein kinase) phospho-serine/threonine/tyrosine-binding protein], resulted in potent chemoresistance. Our follow-up studies demonstrated that knockdown of MK-STYX prevents cells from undergoing apoptosis through a block in cytochrome c release, but that MK-STYX does not localize proximal to the molecular machinery currently known to control this process. In an effort to define its molecular mechanism, we utilized an unbiased proteomics approach to identify proteins that interact with MK-STYX. We identified the mitochondrial phosphatase, PTPMT1 (PTP localized to mitochondrion 1), as the most significant and unique interaction partner of MK-STYX. We previously reported that knockdown of PTPMT1, an important component of the cardiolipin biosynthetic pathway, is sufficient to induce apoptosis and increase chemosensitivity. Accordingly, we hypothesized that MK-STYX and PTPMT1 interact and serve opposing functions in mitochondrial-dependent cell death. We confirmed that MK-STYX and PTPMT1 interact in cells and, importantly, found that MK-STYX suppresses PTPMT1 catalytic activity. Furthermore, we found that knockdown of PTPMT1 resensitizes MK-STYX knockdown cells to chemotherapeutics and restores the ability to release cytochrome c. Taken together, our data support a model in which MK-STYX controls apoptosis by negatively regulating PTPMT1. Given the important role of PTPMT1 in the production of cardiolipin and other phospholipids, this raises the possibility that dysregulated mitochondrial lipid metabolism may facilitate chemoresistance.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Mitocôndrias/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Reguladoras de Apoptose/genética , Células HeLa , Humanos , Metabolismo dos Lipídeos/fisiologia , PTEN Fosfo-Hidrolase/genética , Interferência de RNA
4.
Carbohydr Res ; 362: 21-9, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23069484

RESUMO

Increased activity of the main carbohydrate pathways (glycolysis, pentose phosphate, and hexosamine biosynthetic pathways) is one of the hallmarks of metabolic diseases such as cancer. Sulfoquinovosyl diacylglycerol is a sulfoglycolipid found in the human diet that possesses anticancer activity that is absent when its carbohydrate moiety (glucose 6-sulfonate or sulfoquinovose) is removed. This work used bacterial systems to further understand the metabolism of this sugar through three main carbohydrate processing pathways and how this could influence its biological activity. Using (13)C NMR spectroscopy and enzyme assays, we showed that glucose 6-sulfonate cannot enter the pentose phosphate pathway, hence decreasing pentose and nucleotide biosyntheses. In glycolysis, glucose 6-sulfonate only provides one pyruvate per monosaccharide molecule, decreasing the flux of this pathway by half when compared to glucose 6-phosphate. Glucose 6-sulfonate can enter the hexosamine biosynthetic pathway by producing glucosamine 6-sulfonate, which is a reported antibacterial agent that competitively inhibits hexosamine production. All these interactions with carbohydrate routes might help explain the observed anticancer activity that glucose 6-sulfonate has in vitro. This adds to our knowledge of how vegetables rich in glucose 6-sulfonate can also act as metabolic inhibitors of pathways that are increased in metabolic diseases.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Escherichia coli/química , Glicólise/efeitos dos fármacos , Hexosaminas/biossíntese , Metilglucosídeos/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Isótopos de Carbono , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/metabolismo , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Glucose-6-Fosfato/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Metilglucosídeos/farmacologia , Nucleotídeos/metabolismo , Pentoses/metabolismo , Ácido Pirúvico/metabolismo
5.
Carbohydr Res ; 346(14): 2294-9, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21843880

RESUMO

The structural rationale, synthesis and evaluation of an inhibitor designed to block glucosamine synthesis by competitively inhibiting the action of glutamine: fructose-6-phosphate amidotransferase and subsequently reducing the transformation of any glucosamine-6-phosphate formed to UDP-N-acetylglucosamine are described. The inhibitor 2-acetamido-2,6-dideoxy-6-sulfo-D-glucose (D-glucosamine-6-sulfonate) is an analog of glucosamine-6-phosphate in which the phosphate group in the latter is replaced with a sulfonic acid group. The inhibitor is designed to function by three different modes which together reduce UDP-N-acetylglucosamine synthesis. This reduction was confirmed by evaluating the effect of the inhibitor on bacterial cell-wall synthesis and by demonstrating that it inhibits acetylation of glucosamine-6-phosphate competitively and by acting as a surrogate substrate. Inhibition of glucosamine production or suitably activated glucosamine in bacteria leads to disruption of the peptidoglycan structure, which results in softening, bulging, deformation, fragility and lysis of the cells. These modifications were documented by scanning electron microscopy for bacteria treated with the inhibitor. They were observed for inhibitor concentrations in the 20 mg/mL range for Escherichia coli and Bacillus subtilis and the 5 mg/mL range for Rhizobium trifolii.


Assuntos
Acetilglucosamina/biossíntese , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glucosamina/análogos & derivados , Glucose-6-Fosfato/análogos & derivados , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/antagonistas & inibidores , Bactérias/citologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Domínio Catalítico , Inibidores Enzimáticos/química , Glucosamina/síntese química , Glucosamina/química , Glucosamina/farmacologia , Glucose-6-Fosfato/síntese química , Glucose-6-Fosfato/química , Glucose-6-Fosfato/farmacologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/química , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa