Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bone Miner Res ; 38(7): 1006-1014, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37102793

RESUMO

Although second-generation high-resolution peripheral quantitative computed tomography (XCTII) provides the highest-resolution in vivo bone microstructure assessment, the manufacturer's standard image processing protocol omits fine features in both trabecular and cortical compartments. To optimize fine structure segmentation, we implemented a binarization approach based on a Laplace-Hamming (LH) segmentation and documented the reproducibility and accuracy of XCTII structure segmentation using both the standard Gaussian-based binarization and the proposed LH segmentation approach. To evaluate reproducibility, 20 volunteers (9 women, 11 men; aged 23-75 years) were recruited, and three repeat scans of the radii and tibias were acquired using the manufacturer's standard in vivo protocol. To evaluate accuracy, cadaveric structure phantoms (14 radii, 6 tibias) were scanned on XCTII using the same standard in vivo protocol and on µCT at 24.5 µm resolution. XCTII images were analyzed twice-first, with the manufacturer's standard patient evaluation protocol and, second, with the proposed LH segmentation approach. The LH approach rescued fine features evident in the grayscale images but omitted or overrepresented (thickened) by the standard approach. The LH approach significantly reduced error in trabecular volume fraction (BV/TV) and thickness (Tb.Th) compared with the standard approach; however, higher error was introduced for trabecular separation (Tb.Sp). The LH approach improved the correlation between XCTII and µCT for cortical porosity (Ct.Po) and significantly reduced error in cortical pore diameter (Ct.Po.Dm) compared with the standard approach. The LH approach resulted in improved precision compared with the standard approach for BV/TV, Tb.Th, Ct.Po, and Ct.Po.Dm at the radius and for Ct.Po at the tibia. Our results suggest that the proposed LH approach produces substantially improved binary masks, reduces proportional bias, and provides greater accuracy and reproducibility in important outcome metrics, all due to more accurate segmentation of the fine features in both trabecular and cortical compartments. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osso e Ossos , Tomografia Computadorizada por Raios X , Masculino , Humanos , Feminino , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador , Rádio (Anatomia) , Tíbia/diagnóstico por imagem , Densidade Óssea
2.
Comput Methods Biomech Biomed Engin ; 26(5): 508-516, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35579530

RESUMO

MicroCT-based finite element models were used to compute power law relations for uniaxial compressive yield stress versus bone volume fraction for 78 cores of human trabecular bone from five anatomic sites. The leading coefficient of the power law for calcaneus differed from those for most of the other sites (p < 0.05). However, after normalizing by site-specific mean values, neither the leading coefficient (p > 0.5) nor exponent (p > 0.5) differed among sites, suggesting that a given percentage deviation from mean bone volume fraction has the same mechanical consequence for all sites investigated. These findings help explain the success of calcaneal x-ray and ultrasound measurements for predicting hip fracture risk.


Assuntos
Calcâneo , Fraturas do Quadril , Humanos , Colo do Fêmur/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Osso Esponjoso/diagnóstico por imagem , Calcâneo/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Coluna Vertebral , Densidade Óssea
3.
J Bone Miner Res ; 37(4): 753-763, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35067981

RESUMO

Roux-en Y gastric bypass (RYGB) surgery is an effective treatment for obesity; however, it may negatively impact skeletal health by increasing fracture risk. This increase may be the result not only of decreased bone mineral density but also of changes in bone microstructure, for example, increased cortical porosity. Increased tibial and radial cortical porosity of patients undergoing RYGB surgery has been observed as early as 6 months postoperatively; however, local microstructural changes and associated biological mechanisms driving this increase remain unclear. To provide insight, we studied the spatial distribution of cortical porosity in 42 women and men (aged 46 ± 12 years) after RYGB surgery. Distal tibias and radii were evaluated with high-resolution peripheral quantitative computed tomography (HR-pQCT) preoperatively and at 12 months postoperatively. Laminar analysis was used to determine cortical pore number and size within the endosteal, midcortical, and periosteal layers of the cortex. Paired t tests were used to compare baseline versus follow-up porosity parameters in each layer. Mixed models were used to compare longitudinal changes in laminar analysis outcomes between layers. We found that the midcortical (0.927 ± 0.607 mm-2 to 1.069 ± 0.654 mm-2 , p = 0.004; 0.439 ± 0.293 mm-2 to 0.509 ± 0.343 mm-2 , p = 0.03) and periosteal (0.642 ± 0.412 mm-2 to 0.843 ± 0.452 mm-2 , p < 0.0001; 0.171 ± 0.101 mm-2 to 0.230 ± 0.160 mm-2 , p = 0.003) layers underwent the greatest increases in porosity over the 12-month period at the distal tibia and radius, respectively. The endosteal layer, which had the greatest porosity at baseline, did not undergo significant porosity increase over the same period (1.234 ± 0.402 mm-2 to 1.259 ± 0.413 mm-2 , p = 0.49; 0.584 ± 0.290 mm-2 to 0.620 ± 0.299 mm-2 , p = 0.35) at the distal tibia and radius, respectively. An alternative baseline-mapping approach for endosteal boundary definition confirmed that cortical bone loss was not primarily endosteal. These findings indicate that increases in cortical porosity happen in regions distant from the endosteal surface, suggesting that the underlying mechanism driving the increase in cortical porosity is not merely endosteal trabecularization. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Derivação Gástrica , Densidade Óssea , Osso e Ossos , Osso Cortical/diagnóstico por imagem , Feminino , Derivação Gástrica/efeitos adversos , Humanos , Masculino , Rádio (Anatomia) , Tíbia/diagnóstico por imagem , Tíbia/cirurgia
4.
Artigo em Inglês | MEDLINE | ID: mdl-37383338

RESUMO

Cortical bone microstructure deficits may increase fracture risk in individuals with cardiovascular disease and diabetes. High resolution peripheral quantitative computed tomography (HR-pQCT) enables in vivo microstructure characterization but is limited in its ability to visualize important biological features. We conducted histological analyses and HR-pQCT imaging of distal tibia bone samples from 6 donors with cardiovascular disease (CVD) and type 2 diabetes mellitus (T2D). Histology but not HR-pQCT identified previously undocumented morphopathological deficits that may contribute to cortical bone fragility. These observations may provide guidance for improved HR-pQCT microstructural characterization as well as insight into mechanisms of cortical bone degradation.

5.
JBMR Plus ; 5(11): e10545, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34761148

RESUMO

Humans are exposed to ionizing radiation via spaceflight or cancer radiotherapy, and exposure from radiotherapy is known to increase risk of skeletal fractures. Although irradiation can reduce trabecular bone mass, alter trabecular microarchitecture, and increase collagen cross-linking, the relative contributions of these effects to any loss of mechanical integrity remain unclear. To provide insight, while addressing both the monotonic strength and cyclic-loading fatigue life, we conducted total-body, acute, gamma-irradiation experiments on skeletally mature (17-week-old) C57BL/6J male mice (n = 84). Mice were administered doses of either 0 Gy (sham), 1 Gy (motivated by cumulative exposures from a Mars mission), or 5 Gy (motivated by clinical therapy regimens) with retrieval of the lumbar vertebrae at either a short-term (11-day) or long-term (12-week) time point after exposure. Micro-computed tomography was used to assess trabecular and cortical quantity and architecture, biochemical composition assays were used to assess collagen quality, and mechanical testing was performed to evaluate vertebral compressive strength and fatigue life. At 11 days post-exposure, 5 Gy irradiation significantly reduced trabecular mass (p < 0.001), altered microarchitecture (eg, connectivity density p < 0.001), and increased collagen cross-links (p < 0.001). Despite these changes, vertebral strength (p = 0.745) and fatigue life (p = 0.332) remained unaltered. At 12 weeks after 5 Gy exposure, the trends in trabecular bone persisted; in addition, regardless of irradiation, cortical thickness (p < 0.01) and fatigue life (p < 0.01) decreased. These results demonstrate that the highly significant effects of 5 Gy total-body irradiation on the trabecular bone morphology and collagen cross-links did not translate into detectable effects on vertebral mechanics. The only mechanical deficits observed were associated with aging. Together, these vertebral results suggest that for spaceflight, irradiation alone will likely not alter failure properties, and for radiotherapy, more investigations that include post-exposure time as a positive control and testing of both failure modalities are needed to determine the cause of increased fracture risk. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

6.
Bone ; 137: 115445, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32454256

RESUMO

Although the ductility of bone tissue is a unique element of bone quality and varies with age and across the population, the extent to which and mechanisms by which typical population-variations in tissue-level ductility can alter whole-bone strength remains unclear. To provide insight, we conducted a finite element analysis parameter study of whole-vertebral (monotonic) compressive strength on six human L1 vertebrae. Each model was generated from micro-CT scans, capturing the trabecular micro-architecture in detail, and included a non-linear constitutive model for the bone tissue that allowed for plastic yielding, different strengths in tension and compression, large deformations, and, uniquely, localized damage once a specified limit in tissue-level ultimate strain was exceeded. Those strain limits were based on reported (mean ± SD) values from cadaver experiments (8.8 ± 3.7% strain for trabecular tissue and 2.2 ± 0.9% for cortical tissue). In the parameter study, the strain limits were varied by ±1 SD from their mean values, for a combination of nine analyses per specimen; bounding values of zero and unlimited post-yield strain were also modeled. The main outcomes from the finite element analysis were the vertebral compressive strength and the amount of failed (yielded or damaged) tissue at the overall structure-level failure. Compared to a reference case of using the mean values of ultimate strain, we found that varying both trabecular and cortical tissue ultimate strains by ±1 SD changed the computed vertebral strength by (mean ± SD) ±6.9 ± 1.1% on average. Mechanistically, that modest effect arose because the proportion of yielded tissue (without damage) was 0.9 ± 0.3% of all the bone tissue across the nine cases and the proportion of damaged tissue (i.e. tissue exceeding the prescribed tissue-level ultimate strain) was 0.2 ± 0.1%. If the types of variations in tissue-level ductility investigated here accurately represent real typical variations in the population, the consistency of our results across specimens and the modest effect size together suggest that typical variations in tissue-level ductility only have a modest impact on vertebral compressive strength, in large part because so few trabeculae are damaged at the load capacity of the bone.


Assuntos
Osso e Ossos , Força Compressiva , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Resistência à Tração , Microtomografia por Raio-X
7.
Bone Rep ; 9: 165-172, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30417036

RESUMO

One potentially important bone quality characteristic is the response of bone to cyclic (repetitive) mechanical loading. In small animals, such as in rats and mice, cyclic loading experiments are particularly challenging to perform in a precise manner due to the small size of the bones and difficult-to-eliminate machine compliance. Addressing this issue, we developed a precise method for ex vivo cyclic compressive loading of isolated mouse vertebral bodies. The method has three key characteristics: 3D-printed support jigs for machining plano-parallel surfaces of the tiny vertebrae; pivotable loading platens to ensure uniform contact and loading of specimen surfaces; and specimen-specific micro-CT-based finite element analysis to measure stiffness to prescribe force levels that produce the same specified level of strain for all test specimens. To demonstrate utility, we measured fatigue life for three groups (n = 5-6 per group) of L5 vertebrae of C57BL/6J male mice, comparing our new method against two methods commonly used in the literature. We found reduced scatter of the mechanical behavior for this new method compared to the literature methods. In particular, for a controlled level of strain, the standard deviation of the measured fatigue life was up to 5-fold lower for the new method (F-ratio = 4.9; p < 0.01). The improved precision for this new method for biomechanical testing of small-animal vertebrae may help elucidate aspects of bone quality.

8.
Bone ; 103: 93-101, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28666970

RESUMO

Clinical bone sonometers applied at the calcaneus measure broadband ultrasound attenuation and speed of sound. However, the relation of ultrasound measurements to bone strength is not well-characterized. Addressing this issue, we assessed the extent to which ultrasonic measurements convey in vitro mechanical properties in 25 human calcaneal cancellous bone specimens (approximately 2×4×2cm). Normalized broadband ultrasound attenuation, speed of sound, and broadband ultrasound backscatter were measured with 500kHz transducers. To assess mechanical properties, non-linear finite element analysis, based on micro-computed tomography images (34-micron cubic voxel), was used to estimate apparent elastic modulus, overall specimen stiffness, and apparent yield stress, with models typically having approximately 25-30 million elements. We found that ultrasound parameters were correlated with mechanical properties with R=0.70-0.82 (p<0.001). Multiple regression analysis indicated that ultrasound measurements provide additional information regarding mechanical properties beyond that provided by bone quantity alone (p≤0.05). Adding ultrasound variables to linear regression models based on bone quantity improved adjusted squared correlation coefficients from 0.65 to 0.77 (stiffness), 0.76 to 0.81 (apparent modulus), and 0.67 to 0.73 (yield stress). These results indicate that ultrasound can provide complementary (to bone quantity) information regarding mechanical behavior of cancellous bone.


Assuntos
Calcâneo/diagnóstico por imagem , Calcâneo/fisiologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiologia , Ultrassonografia/métodos , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa