Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nonlinear Dyn ; 103(3): 2955-2971, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33551570

RESUMO

The classic SIR model of epidemic dynamics is solved completely by quadratures, including a time integral transform expanded in a series of incomplete gamma functions. The model is also generalized to arbitrary time-dependent infection rates and solved explicitly when the control parameter depends on the accumulated infections at time t. Numerical results are presented by way of comparison. Autonomous and non-autonomous generalizations of SIR for interacting regions are also considered, including non-separability for two or more interacting regions. A reduction of simple SIR models to one variable leads us to a generalized logistic model, Richards model, which we use to fit Mexico's COVID-19 data up to day number 134. Forecasting scenarios resulting from various fittings are discussed. A critique to the applicability of these models to current pandemic outbreaks in terms of robustness is provided. Finally, we obtain the bifurcation diagram for a discretized version of Richards model, displaying period doubling bifurcation to chaos.

2.
Phys Rev Lett ; 111(17): 170405, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24206466

RESUMO

We present the first experimental microwave realization of the one-dimensional Dirac oscillator, a paradigm in exactly solvable relativistic systems. The experiment relies on a relation of the Dirac oscillator to a corresponding tight-binding system. This tight-binding system is implemented as a microwave system by a chain of coupled dielectric disks, where the coupling is evanescent and can be adjusted appropriately. The resonances of the finite microwave system yield the spectrum of the one-dimensional Dirac oscillator with and without a mass term. The flexibility of the experimental setup allows the implementation of other one-dimensional Dirac-type equations.

3.
Opt Express ; 20(25): 27253-62, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23262675

RESUMO

We examine the free time evolution of a rectangular one dimensional Schrödinger wave packet of constant phase during the early stage which in the paraxial wave approximation is identical to the diffraction of a scalar field from a single slit. Our analysis, based on numerics and the Cornu spiral reveals considerable intricate detail behavior in the density and phase of the wave. We also point out a concentration of the intensity that occurs on axis and propose a new measure of width that expresses this concentration.


Assuntos
Algoritmos , Elétrons , Luz , Óptica e Fotônica/métodos , Teoria Quântica , Probabilidade , Espalhamento de Radiação
4.
Sci Rep ; 10(1): 10229, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576887

RESUMO

Solid state physics deals with systems composed of atoms with strongly bound electrons. The tunneling probability of each electron is determined by interactions that typically extend to neighboring sites, as their corresponding wave amplitudes decay rapidly away from an isolated atomic core. This kind of description is essential in condensed-matter physics, and it rules the electronic transport properties of metals, insulators and many other solid-state systems. The corresponding phenomenology is well captured by tight-binding models, where the electronic band structure emerges from atomic orbitals of isolated atoms plus their coupling to neighboring sites in a crystal. In this work, a mechanical system that emulates dynamically a quantum tightly bound electron is built. This is done by connecting mechanical resonators via locally periodic aluminum bars acting as couplers. When the frequency of a particular resonator lies within the frequency gap of a coupler, the vibrational wave amplitude imitates a bound electron orbital. The localization of the wave at the resonator site and its exponential decay along the coupler are experimentally verified. The quantum dynamical tight-binding model and frequency measurements in mechanical structures show an excellent agreement. Some applications in atomic and condensed matter physics are suggested.

5.
Artigo em Inglês | MEDLINE | ID: mdl-25314557

RESUMO

We provide a family of transparent tight-binding models with nontrivial potentials and site-dependent hopping parameters. Their feasibility is discussed in electromagnetic resonators, dielectric slabs, and quantum-mechanical traps. In the second part of the paper, the arrays are obtained through a generalization of supersymmetric quantum mechanics in discrete variables. The formalism includes a finite-difference Darboux transformation applied to the scattering matrix of a periodic array. A procedure for constructing a hierarchy of discrete Hamiltonians is indicated and a particular biparametric family is given. The corresponding potentials and hopping functions are identified as solitary waves, pointing to a discrete spinorial generalization of the Korteweg-deVries family.


Assuntos
Modelos Teóricos , Teoria Quântica , Fenômenos Eletromagnéticos , Estudos de Viabilidade , Movimento (Física)
6.
Artigo em Inglês | MEDLINE | ID: mdl-23679494

RESUMO

Quantum wires and electromagnetic waveguides possess common features since their physics is described by the same wave equation. We exploit this analogy to investigate experimentally with microwave waveguides and theoretically with the help of an effective potential approach the occurrence of bound states in sharply bent quantum wires. In particular, we compute the bound states, study the features of the transition from a bound to an unbound state caused by the variation of the bending angle, and determine the critical bending angles at which such a transition takes place. The predictions are confirmed by calculations based on a conventional numerical method as well as experimental measurements of the spectra and electric field intensity distributions of electromagnetic waveguides.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa