RESUMO
Natural compounds have been recognized as valuable sources for anticancer drug development. In this work, different parts from Momordica cochinchinensis Spreng were selected to perform cytotoxic screening against human prostate cancer (PC-3) cells. Chromatographic separation and purification were performed for the main constituents of the most effective extract. The content of the fatty acids was determined by Gas Chromatography-Flame Ionization Detector (GC-FID). Chemical structural elucidation was performed by spectroscopic means. For the mechanism of the apoptotic induction of the most effective extract, the characteristics were evaluated by Hoechst 33342 staining, sub-G1 peak analysis, JC-1 staining, and Western blotting. As a result, extracts from different parts of M. cochinchinensis significantly inhibited cancer cell viability. The most effective stem extract induced apoptosis in PC-3 cells by causing nuclear fragmentation, increasing the sub-G1 peak, and changing the mitochondrial membrane potential. Additionally, the stem extract increased the pro-apoptotic (caspase-3 and Noxa) mediators while decreasing the anti-apoptotic (Bcl-xL and Mcl-1) mediators. The main constituents of the stem extract are α-spinasterol and ligballinol, as well as some fatty acids. Our results demonstrated that the stem extract of M. cochinchinensis has cytotoxic and apoptotic effects in PC-3 cells. These results provide basic knowledge for developing antiproliferative agents for prostate cancer in the future.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Momordica/química , Extratos Vegetais/farmacologia , Caules de Planta/química , Antineoplásicos Fitogênicos/química , Apoptose/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Peripheral neuropathy is a common complication that affects individuals with diabetes. Its development involves an excessive presence of oxidative stress, which leads to cellular damage in various tissues. Schwann cells, which are vital for peripheral nerve conduction, are particularly susceptible to oxidative damage, resulting in cell death. MATERIALS AND METHODS: Gamma-mangostin (γ-mangostin), a xanthone derived from Garcinia mangostana, possesses cytoprotective properties in various pathological conditions. In this study, we employed S16Y cells as a representative Schwann cell model to investigate the protective effects of γ-mangostin against the toxicity induced by tert-Butyl hydroperoxide (tBHP). Different concentrations of γ-mangostin and tBHP were used to determine non-toxic doses of γ-mangostin and toxic doses of tBHP for subsequent experiments. MTT cell viability assays, cell flow cytometry, and western blot analysis were used for evaluating the protective effects of γ-mangostin. RESULTS: The results indicated that tBHP (50 µM) significantly reduced S16Y cell viability and induced apoptotic cell death by upregulating cleaved caspase-3 and cleaved PARP protein levels and reducing the Bcl- XL/Bax ratio. Notably, pretreatment with γ-mangostin (2.5 µM) significantly mitigated the decrease in cell viability caused by tBHP treatment. Furthermore, γ-mangostin effectively reduced cellular apoptosis induced by tBHP. Lastly, γ-mangostin significantly reverted tBHP-mediated caspase-3 and PARP cleavage and increased the Bcl-XL/Bax ratio. CONCLUSION: Collectively, these findings highlight the ability of γ-mangostin to protect Schwann cells from apoptotic cell death induced by oxidative stress.
Assuntos
Apoptose , Inibidores de Poli(ADP-Ribose) Polimerases , Xantonas , Humanos , terc-Butil Hidroperóxido/toxicidade , Caspase 3/metabolismo , Caspase 3/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Estresse Oxidativo , Células de Schwann/metabolismo , Sobrevivência CelularRESUMO
Cowanin, a xanthone derivative extracted from the Garcinia fusca plant, has been recognized for various biological activities including, antimicrobial, anti-inflammatory, and anticancer activities. However, the mechanism to induce cancer cell death in cancer cells remains to be fully elucidated. Our previous report showed that other xanthones from these plants could act as histone deacetylase inhibitors (HDACi), so we deeply analyzed the role of cowanin, a major compound of G.fusca, and investigated through the mode of cell death both apoptosis and autophagy that have never been reported. As a result, it was demonstrated that cowanin indicated the role of HDACi as other xanthones. The molecular docking analysis showed that cowanin could interact within the catalytic pocket region of HDAC class I (HDAC2, 8) and II (HDAC4, 7) proteins and inhibit their activity. Also, the level of protein expression of HDAC2, 4, 7, and 8 was distinctly decreased, and the level of histone H3 and H4 acetylation increased in cowanin treated cells. For the mode of cell death, cowanin demonstrated both apoptosis and autophagy activation in Jurkat cells. Besides, cowanin significantly suppressed phosphorylation of PI3K, Akt, and mTOR signaling. Therefore, these findings revealed that cowanin represents a new promising candidate for development as an anticancer agent by inducing apoptosis and autophagy via PI3K/AKT/mTOR pathway and effectively inhibiting HDAC activity.
Assuntos
Garcinia , Inibidores de Histona Desacetilases , Extratos Vegetais , Humanos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Células Jurkat/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
A novel platform of a polydiacetylene combined with rhodamine B (PDA-Rho) colorimetric chemosensor array was prepared from a diacetylene monomer and rhodamine B derivative. Rhodamine B derivative as the ion-recognition element was embedded in the polydiacetylene matrix. To fabricate chemosensor, diacetylene monomer connected rhodamine B derivatives (DA-Rho) was coated onto a filter paper surface via drop-casting technique and transformed to polydiacetylene by polymerisation through ultraviolet (UV) irradiation. From the result, PDA-Rhoen exhibited high sensitivity and selectivity for Au3+ and could be monitored directly by naked eyes providing a fast, portable and easy-to-use as a molecular device in the real system. The DFT calculation results showed a stable complex between PDA-Rho and Au3+. We believe that, this method offers a sensitive and accurate process for Au3+ ion detection in real environmental and biological applications.
RESUMO
Three new oxygenated xanthones, fuscaxanthones L-N (1-3), and 14 known xanthones 4-17, together with the other known metabolites 18-20 were isolated from the stem barks of Garcinia fusca Pierre. Their chemical structures were determined based on NMR and MS spectroscopic data analysis, as well as single X-ray crystallography. The geranylated compounds, cowanin (13), cowagarcinone E (15), norcowanin (16) and cowanol (17) exhibited potent inhibitions against acetylcholinesterase (AChE) (IC50 0.33-1.09⯵M) and butyrylcholinesterase (BChE) (IC50 0.048-1.84⯵M), which were more active than the reference drug, galanthamine. Compound 15 was highly potent BChE inhibitor (IC50 0.048⯵M) and was 76-fold more potent than the drug. Structure-activity relationship studies indicated that the C-2 prenyl and C-8 geranyl substituents in the tetraoxygenated scaffold are important for high activity. Molecular docking studies revealed that the leads 13 and 15-17 showed similar binding orientations on both enzymes and very well-fitted at the double binding active sites of PAS and CAS with strong hydrophobic interactions from both isoprenyl side chains.