Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 19697-19715, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859099

RESUMO

Optical camera communication (OCC) shows promise for optical wireless communication (OWC) in vehicular networks. However, vehicle mobility-induced angular distortions hinder system throughput by degrading non-isotropic vehicular OCC channel gain. Few of the prior works have ever made a comprehensive analysis of their impact, especially based on the pixel value which reflects the camera imaging features. To address this knowledge gap, a pixel value-described vehicular OCC system model accounting for transmitter imaging location and intensity from the geometry and radiometry aspects is presented in this paper with common types of the offset and rotation angles included. We integrate a MATLAB-based simulated vehicular OCC system with an experimentally designed testbed for validation and performance analysis. For a single-time snapshot, we investigate the impacts of common angular distortion types in vehicular OCC systems on maximum pixel value, imaging location, and communication-related metrics. Furthermore, we statistically analyze their influences by considering two driving scenarios with respective angular distributions. The angular distortion characterization from this work is expected to lay a stepping stone to addressing mobility in vehicular OCC systems.

2.
Opt Express ; 31(26): 43289-43306, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178426

RESUMO

In this paper, different neural network-based methods are proposed to improve the achievable information rate in amplitude-modulated soliton communication systems. The proposed methods use simulated data to learn effective soliton detection by suppressing nonlinear impairments beyond amplifier noise, including intrinsic inter-soliton interaction, Gordon-Haus effect-induced timing jitter, and their combined impact. We first present a comprehensive study of these nonlinear impairments based on numerical simulations. Then, two neural network designs are developed based on a regression network and a classifier. We estimate the achievable information rates of the proposed learning-based soliton detection schemes as well as two model-based benchmark schemes, including the nonlinear Fourier transform eigenvalue estimation and continuous spectrum-aided eigenvalue estimation schemes. Our results demonstrate that both learning-based designs lead to substantial performance gains when compared to the benchmark schemes. Importantly, we highlight that exploiting the channel memory, introduced by solitonic interactions, can yield additional gains in the achievable information rate. Through a comparative analysis of the two neural network designs, we establish that the classifier design exhibits superior adaptability to interaction impairment and is more suitable for symbol detection tasks in the context of the investigated scenarios.

3.
Sensors (Basel) ; 23(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430590

RESUMO

Visible light communication (VLC) is an emerging mode of wireless communication that supports both illumination and communication. One essential function of VLC systems is the dimming control, which requires a sensitive receiver for low-light conditions. The use of an array of single-photon avalanche diodes (SPADs) is one promising approach to enhancing receivers' sensitivity in a VLC system. However, because of the non-linear effects brought on by the SPAD dead time, an increase in the brightness of the light might degrade its performance. In this paper, an adaptive SPAD receiver is proposed for VLC systems to ensure reliable operation under various dimming levels. In the proposed receiver, a variable optical attenuator (VOA) is used to adaptively control the SPAD's incident photon rate according to the instantaneous received optical power so that SPAD operates in its optimal conditions. The application of the proposed receiver in systems with various modulation schemes is investigated. When binary on-off keying (OOK) modulation is employed due to its good power efficiency, two dimming control methods of the IEEE 802.15.7 standard based on analogue and digital dimming are considered. We also investigate the application of the proposed receiver in the spectral efficient VLC systems with multi-carrier modulation schemes, i.e., direct current (DCO) and asymmetrically clipped optical (ACO) orthogonal frequency division multiplexing (OFDM). Through extensive numerical results, it is demonstrated that the suggested adaptive receiver outperforms the conventional PIN PD and SPAD array receivers in terms of bit error rate (BER) and achievable data rate.

4.
Opt Lett ; 47(9): 2294-2297, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486783

RESUMO

Photon counting detectors such as single-photon avalanche diode (SPAD) arrays can be used to improve the sensitivity of optical wireless communication (OWC) systems. However, the achievable data rate of SPAD-based OWC systems is strongly limited by the nonlinearity induced by the SPAD dead time. In this work, the performance of a SPAD-based OWC system with orthogonal frequency division multiplexing (OFDM) is investigated and compared with that of on-off keying (OOK). We employ nonlinear equalization, peak-to-average power ratio optimization by adjusting the OFDM clipping level, and adaptive bit and energy loading to achieve a record experimental data rate of 5 Gbps. The contrasting optimal regimes of operation of the two modulation schemes are also demonstrated.

5.
Entropy (Basel) ; 22(8)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33286668

RESUMO

The capacity limits of fiber-optic communication systems in the nonlinear regime are not yet well understood. In this paper, we study the capacity of amplitude modulated first-order soliton transmission, defined as the maximum of the so-called time-scaled mutual information. Such definition allows us to directly incorporate the dependence of soliton pulse width to its amplitude into capacity formulation. The commonly used memoryless channel model based on noncentral chi-squared distribution is initially considered. Applying a variance normalizing transform, this channel is approximated by a unit-variance additive white Gaussian noise (AWGN) model. Based on a numerical capacity analysis of the approximated AWGN channel, a general form of capacity-approaching input distributions is determined. These optimal distributions are discrete comprising a mass point at zero (off symbol) and a finite number of mass points almost uniformly distributed away from zero. Using this general form of input distributions, a novel closed-form approximation of the capacity is determined showing a good match to numerical results. Finally, mismatch capacity bounds are developed based on split-step simulations of the nonlinear Schro¨dinger equation considering both single soliton and soliton sequence transmissions. This relaxes the initial assumption of memoryless channel to show the impact of both inter-soliton interaction and Gordon-Haus effects. Our results show that the inter-soliton interaction effect becomes increasingly significant at higher soliton amplitudes and would be the dominant impairment compared to the timing jitter induced by the Gordon-Haus effect.

6.
Opt Express ; 25(16): 18685-18702, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041064

RESUMO

This paper studies different signaling techniques on the continuous spectrum (CS) of nonlinear optical fiber defined by nonlinear Fourier transform. Three different signaling techniques are proposed and analyzed based on the statistics of the noise added to CS after propagation along the nonlinear optical fiber. The proposed methods are compared in terms of error performance, distance reach, and complexity. Furthermore, the effect of chromatic dispersion on the data rate and noise in nonlinear spectral domain is investigated. It is demonstrated that, for a given sequence of CS symbols, an optimal bandwidth (or symbol rate) can be determined so that the temporal duration of the propagated signal at the end of the fiber is minimized. In effect, the required guard interval between the subsequently transmitted data packets in time is minimized and the effective data rate is significantly enhanced. Moreover, by selecting the proper signaling method and design criteria a distance reach of 7100 km is reported by only singling on CS at a rate of 9.6 Gbps.

7.
Appl Opt ; 51(31): 7509-17, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23128697

RESUMO

In this paper, the method of random wave vectors for simulation of atmospheric turbulence is extended to 2D×2D space to provide spatial degrees of freedom at both input and output planes. The modified technique can thus simultaneously simulate the turbulence-induced log-amplitude and phase distortions for optical systems with extended sources either implemented as a single large aperture or multiple apertures. The reliability of our simulation technique is validated in different conditions and its application is briefly investigated in a multibeam free-space optical communication scenario.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa