Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(11): 4608-4615, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35536749

RESUMO

Monolayer hexagonal boron nitride (hBN) has attracted interest as an ultrathin tunnel barrier or environmental protection layer. Recently, wafer-scale hBN growth on Cu(111) was developed for semiconductor chip applications. For basic research and technology, understanding how hBN perturbs underlying electronically active layers is critical. Encouragingly, hBN/Cu(111) has been shown to preserve the Cu(111) surface state (SS), but it was unknown how tunneling into this SS through hBN varies spatially. Here, we demonstrate that the Cu(111) SS under wafer-scale hBN is homogeneous in energy and spectral weight over nanometer length scales and across atomic terraces. In contrast, a new spectral feature─not seen on bare Cu(111)─varies with atomic registry and shares the spatial periodicity of the hBN/Cu(111) moiré. This work demonstrates that, for some 2D electron systems, an hBN overlayer can act as a protective yet remarkably transparent window on fragile low-energy electronic structure below.


Assuntos
Compostos de Boro , Semicondutores , Compostos de Boro/química , Eletrônica
2.
Sci Adv ; 4(5): eaar5492, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29795783

RESUMO

Dynamic nuclear polarization via contact with electronic spins has emerged as an attractive route to enhance the sensitivity of nuclear magnetic resonance beyond the traditional limits imposed by magnetic field strength and temperature. Among the various alternative implementations, the use of nitrogen vacancy (NV) centers in diamond-a paramagnetic point defect whose spin can be optically polarized at room temperature-has attracted widespread attention, but applications have been hampered by the need to align the NV axis with the external magnetic field. We overcome this hurdle through the combined use of continuous optical illumination and a microwave sweep over a broad frequency range. As a proof of principle, we demonstrate our approach using powdered diamond with which we attain bulk 13C spin polarization in excess of 0.25% under ambient conditions. Remarkably, our technique acts efficiently on diamond crystals of all orientations and polarizes nuclear spins with a sign that depends exclusively on the direction of the microwave sweep. Our work paves the way toward the use of hyperpolarized diamond particles as imaging contrast agents for biosensing and, ultimately, for the hyperpolarization of nuclear spins in arbitrary liquids brought in contact with their surface.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa