Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 12(1): 50-5, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22141739

RESUMO

We study two-terminal devices for DNA sequencing that consist of a metallic graphene nanoribbon with zigzag edges (ZGNR) and a nanopore in its interior through which the DNA molecule is translocated. Using the nonequilibrium Green functions combined with density functional theory, we demonstrate that each of the four DNA nucleobases inserted into the nanopore, whose edge carbon atoms are passivated by either hydrogen or nitrogen, will lead to a unique change in the device conductance. Unlike other recent biosensors based on transverse electronic transport through translocated DNA, which utilize small (of the order of pA) tunneling current across a nanogap or a nanopore yielding a poor signal-to-noise ratio, our device concept relies on the fact that in ZGNRs local current density is peaked around the edges so that drilling a nanopore away from the edges will not diminish the conductance. Inserting a nucleobase into the nanopore affects the charge density in the surrounding area, thereby modulating edge conduction currents whose magnitude is of the order of microampere at bias voltage 0.1 V. The proposed biosensors are not limited to ZGNRs and they could be realized with other nanowires supporting transverse edge currents, such as chiral GNRs or wires made of two-dimensional topological insulators.


Assuntos
Condutometria/instrumentação , DNA/análise , DNA/genética , Grafite/química , Nanoestruturas/química , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise de Sequência de DNA/instrumentação , Sequência de Bases , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Metais/química , Dados de Sequência Molecular , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Porosidade
2.
Phys Rev Lett ; 105(23): 236803, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21231493

RESUMO

We study molecular transistors where graphene nanoribbons act as three metallic electrodes connected to a ring-shaped 18-annulene molecule. Using the nonequilibrium Green function formalism combined with density functional theory, recently extended to multiterminal devices, we show that these nanostructures exhibit exponentially small transmission when the source and drain electrodes are attached in a configuration with destructive interference of electron paths around the ring. The third electrode, functioning either as an attached infinite-impedance voltage probe or as an "air-bridge" top gate covering half of molecular ring, introduces dephasing that brings the transistor into the "on" state with its transmission in the latter case approaching the maximum limit for a single conducting channel device. The current through the latter device can also be controlled in the far-from-equilibrium regime by applying a gate voltage.

3.
J Chem Phys ; 131(16): 164105, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19894925

RESUMO

We present a generalized approach for computing electron conductance and I-V characteristics in multiterminal junctions from first-principles. Within the framework of Keldysh theory, electron transmission is evaluated employing an O(N) method for electronic-structure calculations. The nonequilibrium Green function for the nonequilibrium electron density of the multiterminal junction is computed self-consistently by solving Poisson equation after applying a realistic bias. We illustrate the suitability of the method on two examples of four-terminal systems, a radialene molecule connected to carbon chains and two crossed-carbon chains brought together closer and closer. We describe charge density, potential profile, and transmission of electrons between any two terminals. Finally, we discuss the applicability of this technique to study complex electronic devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa