Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 552(7683): 110-115, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29160304

RESUMO

Fibrosis is a common pathology in cardiovascular disease. In the heart, fibrosis causes mechanical and electrical dysfunction and in the kidney, it predicts the onset of renal failure. Transforming growth factor ß1 (TGFß1) is the principal pro-fibrotic factor, but its inhibition is associated with side effects due to its pleiotropic roles. We hypothesized that downstream effectors of TGFß1 in fibroblasts could be attractive therapeutic targets and lack upstream toxicity. Here we show, using integrated imaging-genomics analyses of primary human fibroblasts, that upregulation of interleukin-11 (IL-11) is the dominant transcriptional response to TGFß1 exposure and required for its pro-fibrotic effect. IL-11 and its receptor (IL11RA) are expressed specifically in fibroblasts, in which they drive non-canonical, ERK-dependent autocrine signalling that is required for fibrogenic protein synthesis. In mice, fibroblast-specific Il11 transgene expression or Il-11 injection causes heart and kidney fibrosis and organ failure, whereas genetic deletion of Il11ra1 protects against disease. Therefore, inhibition of IL-11 prevents fibroblast activation across organs and species in response to a range of important pro-fibrotic stimuli. These results reveal a central role of IL-11 in fibrosis and we propose that inhibition of IL-11 is a potential therapeutic strategy to treat fibrotic diseases.


Assuntos
Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Fibrose/metabolismo , Fibrose/patologia , Interleucina-11/metabolismo , Animais , Comunicação Autócrina , Células Cultivadas , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/induzido quimicamente , Coração , Humanos , Interleucina-11/antagonistas & inibidores , Interleucina-11/genética , Subunidade alfa de Receptor de Interleucina-11/deficiência , Subunidade alfa de Receptor de Interleucina-11/genética , Rim/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Escores de Disfunção Orgânica , Biossíntese de Proteínas , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Transgenes/genética
2.
Hum Mol Genet ; 28(12): 1971-1981, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30715350

RESUMO

Titin-truncating variants (TTNtv) are the most common genetic cause of dilated cardiomyopathy. TTNtv occur in ~1% of the general population and causes subclinical cardiac remodeling in asymptomatic carriers. In rat models with either proximal or distal TTNtv, we previously showed altered cardiac metabolism at baseline and impaired cardiac function in response to stress. However, the molecular mechanism(s) underlying these effects remains unknown. In the current study, we used rat models of TTNtv to investigate the effect of TTNtv on autophagy and mitochondrial function, which are essential for maintaining cellular metabolic homeostasis and cardiac function. In both the proximal and distal TTNtv rat models, we found increased levels of LC3B-II and p62 proteins, indicative of diminished autophagic degradation. The accumulation of autophagosomes and p62 protein in cardiomyocytes was also demonstrated by electron microscopy and immunochemistry, respectively. Impaired autophagy in the TTNtv heart was associated with increased phosphorylation of mTOR and decreased protein levels of the lysosomal protease, cathepsin B. In addition, TTNtv hearts showed mitochondrial dysfunction, as evidenced by decreased oxygen consumption rate in cardiomyocytes, increased levels of reactive oxygen species and mitochondrial protein ubiquitination. We also observed increased acetylation of mitochondrial proteins associated with decreased NAD+/NADH ratio in the TTNtv hearts. mTORC1 inhibitor, rapamycin, was able to rescue the impaired autophagy in TTNtv hearts. In summary, TTNtv leads to impaired autophagy and mitochondrial function in the heart. These changes not only provide molecular mechanisms that underlie TTNtv-associated ventricular remodeling but also offer potential targets for its intervention.


Assuntos
Autofagia/genética , Cardiomiopatia Dilatada/genética , Conectina/genética , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Acetilação , Animais , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Cardiomiopatia Dilatada/metabolismo , Catepsina B/metabolismo , Células Cultivadas , Conectina/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/metabolismo , NAD/análogos & derivados , NAD/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Deleção de Sequência , Proteína Sequestossoma-1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa