Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 20(11): 1525-1531, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34099904

RESUMO

The chiral anomaly is the predicted breakdown of chiral symmetry in a Weyl semimetal with monopoles of opposite chirality when an electric field is applied parallel to a magnetic field. It occurs because of charge pumping between monopoles of opposite chirality. Experimental observation of this fundamental effect is plagued by concerns about the current pathways. Here we demonstrate the thermal chiral anomaly, energy pumping between monopoles, in topological insulator bismuth-antimony alloys driven into an ideal Weyl semimetal state by a Zeeman field, with the chemical potential pinned at the Weyl points and in the absence of any trivial Fermi surface pockets. The experimental signature is a large enhancement of the thermal conductivity in an applied magnetic field parallel to the thermal gradient. This work demonstrates both pumping of energy and charge between the two Weyl points of opposite chirality and that they are related by the Wiedemann-Franz law.

2.
Phys Rev Lett ; 114(10): 107201, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815962

RESUMO

Intrinsic spin Hall conductivities are calculated for strong spin-orbit Bi(1-x)Sb(x) semimetals, from the Kubo formula and using Berry curvatures evaluated throughout the Brillouin zone from a tight-binding Hamiltonian. Nearly crossing bands with strong spin-orbit interaction generate giant spin Hall conductivities in these materials, ranging from 474 (ℏ/e)(Ω cm)^{-1} for bismuth to 96 (ℏ/e)(Ω cm)^{-1} for antimony; the value for bismuth is more than twice that of platinum. The large spin Hall conductivities persist for alloy compositions corresponding to a three-dimensional topological insulator state, such as Bi(0.83)Sb(0.17). The spin Hall conductivity could be changed by a factor of 5 for doped Bi, or for Bi(0.83)Sb(0.17), by changing the chemical potential by 0.5 eV, suggesting the potential for doping or voltage tuned spin Hall current.

3.
ACS Nano ; 17(6): 5963-5973, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36892080

RESUMO

Copper-doped zinc sulfide (ZnS:Cu) exhibits down-conversion luminescence in the UV, visible, and IR regions of the electromagnetic spectrum; the visible red, green, and blue emission is referred to as R-Cu, G-Cu, and B-Cu, respectively. The sub-bandgap emission arises from optical transitions between localized electronic states created by point defects, making ZnS:Cu a prolific phosphor material and an intriguing candidate material for quantum information science, where point defects excel as single-photon sources and spin qubits. Colloidal nanocrystals (NCs) of ZnS:Cu are particularly interesting as hosts for the creation, isolation, and measurement of quantum defects, since their size, composition, and surface chemistry can be precisely tailored for biosensing and optoelectronic applications. Here, we present a method for synthesizing colloidal ZnS:Cu NCs that emit primarily R-Cu, which has been proposed to arise from the CuZn-VS complex, an impurity-vacancy point defect structure analogous to well-known quantum defects in other materials that produce favorable optical and spin dynamics. First-principles calculations confirm the thermodynamic stability and electronic structure of CuZn-VS. Temperature- and time-dependent optical properties of ZnS:Cu NCs show blueshifting luminescence and an anomalous plateau in the intensity dependence as temperature is increased from 19 K to 290 K, for which we propose an empirical dynamical model based on thermally activated coupling between two manifolds of states inside the ZnS bandgap. Understanding of R-Cu emission dynamics, combined with a controlled synthesis method for obtaining R-Cu centers in colloidal NC hosts, will greatly facilitate the development of CuZn-VS and related complexes as quantum point defects in ZnS.

4.
Joule ; 5(11): 3057-3067, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34841198

RESUMO

Thermoelectric modules are a promising approach to energy harvesting and efficient cooling. In addition to the longitudinal Seebeck effect, transverse devices utilizing the anomalous Nernst effect (ANE) have recently attracted interest. For high conversion efficiency, it is required that the material have a large ANE thermoelectric power and low electrical resistance, which lead to the conductivity of the ANE. ANE is usually explained in terms of intrinsic contributions from Berry curvature. Our observations suggest that extrinsic contributions also matter. Studying single-crystal manganese-bismuth (MnBi), we find a high ANE thermopower (∼10 µV/K) under 0.6 T at 80 K, and a transverse thermoelectric conductivity of over 40 A/Km. With insight from theoretical calculations, we attribute this large ANE predominantly to a new advective magnon contribution arising from magnon-electron spin-angular momentum transfer. We propose that introducing a large spin-orbit coupling into ferromagnetic materials may enhance the ANE through the extrinsic contribution of magnons.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa