Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(6): 068101, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213207

RESUMO

We analyze the stability of biological membrane tubes, with and without a base flow of lipids. Membrane dynamics are completely specified by two dimensionless numbers: the well-known Föppl-von Kármán number Γ and the recently introduced Scriven-Love number SL, respectively quantifying the base tension and base flow speed. For unstable tubes, the growth rate of a local perturbation depends only on Γ, whereas SL governs the absolute versus convective nature of the instability. Furthermore, nonlinear simulations of unstable tubes reveal an initially localized disturbance result in propagating fronts, which leave a thin atrophied tube in their wake. Depending on the value of Γ, the thin tube is connected to the unperturbed regions via oscillatory or monotonic shape transitions-reminiscent of recent experimental observations on the retraction and atrophy of axons. We elucidate our findings through a weakly nonlinear analysis, which shows membrane dynamics may be approximated by a model of the class of extended Fisher-Kolmogorov equations. Our study sheds light on the pattern selection mechanism in axonal shapes by recognizing the existence of two Lifshitz points, at which the front dynamics undergo steady-to-oscillatory bifurcations.


Assuntos
Lipídeos , Membrana Celular , Membranas
2.
Biophys J ; 119(6): 1065-1077, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32860742

RESUMO

In various biological processes such as endocytosis and caveolae formation, the cell membrane is locally deformed into curved morphologies. Previous models to study membrane morphologies resulting from locally induced curvature often only consider the possibility of axisymmetric shapes-an indeed unphysical constraint. Past studies predict that the cell membrane buds at low resting tensions and stalls at a flat pit at high resting tensions. In this work, we lift the restriction to axisymmetry to study all possible membrane morphologies. Only if the resting tension of the membrane is low, we reproduce axisymmetric membrane morphologies. When the resting tension is moderate to high, we show that 1) axisymmetric membrane pits are unstable and 2) nonaxisymmetric ridge-shaped structures are energetically favorable. Furthermore, we find the interplay between intramembrane viscous flow and the rate of induced curvature affects the membrane's ability to transition into nonaxisymmetric ridges and axisymmetric buds. In particular, we show that axisymmetric buds are favored when the induced curvature is rapidly increased, whereas nonaxisymmetric ridges are favored when the curvature is slowly increased. Our results hold relevant implications for biological processes such as endocytosis and physical phenomena like phase separation in lipid bilayers.


Assuntos
Endocitose , Bicamadas Lipídicas , Membrana Celular , Membranas , Viscosidade
3.
Phys Rev Lett ; 124(15): 158102, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357050

RESUMO

We analyze the nonequilibrium shape fluctuations of giant unilamellar vesicles encapsulating motile bacteria. Owing to bacteria-membrane collisions, we experimentally observe a significant increase in the magnitude of membrane fluctuations at low wave numbers, compared to the well-known thermal fluctuation spectrum. We interrogate these results by numerically simulating membrane height fluctuations via a modified Langevin equation, which includes bacteria-membrane contact forces. Taking advantage of the lengthscale and timescale separation of these contact forces and thermal noise, we further corroborate our results with an approximate theoretical solution to the dynamical membrane equations. Our theory and simulations demonstrate excellent agreement with nonequilibrium fluctuations observed in experiments. Moreover, our theory reveals that the fluctuation-dissipation theorem is not broken by the bacteria; rather, membrane fluctuations can be decomposed into thermal and active components.


Assuntos
Vesículas Citoplasmáticas/química , Lipídeos de Membrana/química , Modelos Biológicos , Modelos Químicos , Bacillus subtilis/química , Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Vesículas Citoplasmáticas/metabolismo , Locomoção , Lipídeos de Membrana/metabolismo , Fosfatidiletanolaminas/química , Rodaminas/química , Termodinâmica , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
4.
Phys Chem Chem Phys ; 16(24): 12535-43, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24832908

RESUMO

The integration of Microbial Fuel Cells (MFCs) in a microfluidic geometry can significantly enhance the power density of these cells, which would have more active bacteria per unit volume. Moreover, microfluidic MFCs can be operated in a continuous mode as opposed to the traditional batch-fed mode. Here we investigate the effect of fluid flow on the performance of microfluidic MFCs. The growth and the structure of the bacterial biofilm depend to a large extent on the shear stress of the flow. We report the existence of a range of flow rates for which MFCs can achieve maximum voltage output. When operated under these optimal conditions, the power density of our microfluidic MFC is about 15 times that of a similar-size batch MFC. Furthermore, this optimum suggests a correlation between the behaviour of bacteria and fluid flow.


Assuntos
Fontes de Energia Bioelétrica , Microfluídica
5.
Phys Rev E ; 101(5-1): 052401, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32575240

RESUMO

The equations governing lipid membrane dynamics in planar, spherical, and cylindrical geometries are presented here. Unperturbed and first-order perturbed equations are determined and nondimensionalized. In membrane systems with a nonzero base flow, perturbed in-plane and out-of-plane quantities are found to vary over different length scales. A new dimensionless number, named the Scriven-Love number, and the well-known Föppl-von Kármán number result from a scaling analysis. The Scriven-Love number compares out-of-plane forces arising from the in-plane, intramembrane viscous stresses to the familiar elastic bending forces, while the Föppl-von Kármán number compares tension to bending forces. Both numbers are calculated in past experimental works, and span a wide range of values in various biological processes across different geometries. In situations with large Scriven-Love and Föppl-von Kármán numbers, the dynamical response of a perturbed membrane is dominated by out-of-plane viscous and surface tension forces-with bending forces playing a negligible role. Calculations of non-negligible Scriven-Love numbers in various biological processes and in vitro experiments show in-plane intramembrane viscous flows cannot generally be ignored when analyzing lipid membrane behavior.

6.
Phys Rev E ; 96(4-1): 042409, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29347561

RESUMO

The theory of irreversible thermodynamics for arbitrarily curved lipid membranes is presented here. The coupling between elastic bending and irreversible processes such as intramembrane lipid flow, intramembrane phase transitions, and protein binding and diffusion is studied. The forms of the entropy production for the irreversible processes are obtained, and the corresponding thermodynamic forces and fluxes are identified. Employing the linear irreversible thermodynamic framework, the governing equations of motion along with appropriate boundary conditions are provided.


Assuntos
Lipídeos de Membrana/metabolismo , Membranas/metabolismo , Modelos Biológicos , Fenômenos Biomecânicos , Difusão , Elasticidade , Modelos Lineares , Movimento (Física) , Transição de Fase , Ligação Proteica , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa