Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 230: 44-58, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074540

RESUMO

The actin cytoskeleton is involved in a large number of cellular signaling events in addition to providing structural integrity to the cell. Actin polymerization is a key event during cellular signaling. Although the role of actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, the reorganization of the actin cytoskeleton upon signaling has been rarely explored due to lack of suitable assays. Keeping in mind this lacuna, we developed a confocal microscopy based approach that relies on high magnification imaging of cellular F-actin, followed by image reconstruction using commercially available software. In this review, we discuss the context and relevance of actin quantitation, followed by a detailed hands-on approach of the methodology involved with specific points on troubleshooting and useful precautions. In the latter part of the review, we elucidate the method by discussing applications of actin quantitation from our work in several important problems in contemporary membrane biology ranging from pathogen entry into host cells, to GPCR signaling and membrane-cytoskeleton interaction. We envision that future discovery of cell-permeable novel fluorescent probes, in combination with genetically encoded actin-binding reporters, would allow real-time visualization of actin cytoskeleton dynamics to gain deeper insights into active cellular processes in health and disease.

2.
J Phys Chem Lett ; 15(13): 3677-3682, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38535976

RESUMO

Lead halide perovskites suffer from water and moisture instability due to the highly ionic nature of the crystal structures, though a few groups took advantage of it for chemical transformation via water-assisted strategy. However, direct exposure of the perovskite to bulk water leads to uncontrolled chemical transformation. Here, we report a controlled chemical transformation of CsPbBr3 to CsPb2Br5 triggered by nanoconfined water by placing CsPbBr3 in the nonpolar phase within a reverse micelle. The chemical transformation reaction is probed by using steady-state and time-resolved optical spectroscopy. We observe absorption and photoluminescence in the UV region stemming clearly from the CsPb2Br5 phase upon interaction with the reverse micellar aqueous solution. Transmission electron microscopy and X-ray diffraction measurements further provided the structure and morphology. Our results direct the formation of CsPbBr3-CsPb2Br5 nanocomposite under dry conditions while the chemically transformed CsPb2Br5 phase exists only in moist conditions, which we explain via the CsBr-stripping mechanism.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa