Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(23): 16085-16096, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38831660

RESUMO

Bottlebrush polymers, macromolecules consisting of dense polymer side chains grafted from a central polymer backbone, have unique properties resulting from this well-defined molecular architecture. With the advent of controlled radical polymerization techniques, access to these architectures has become more readily available. However, synthetic challenges remain, including the need for intermediate purification, the use of toxic solvents, and challenges with achieving long bottlebrush architectures due to backbone entanglements. Herein, we report hybrid bonding bottlebrush polymers (systems integrating covalent and noncovalent bonding of structural units) consisting of poly(sodium 4-styrenesulfonate) (p(NaSS)) brushes grafted from a peptide amphiphile (PA) supramolecular polymer backbone. This was achieved using photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization in water. The structure of the hybrid bonding bottlebrush architecture was characterized using cryogenic transmission electron microscopy, and its properties were probed using rheological measurements. We observed that hybrid bonding bottlebrush polymers were able to organize into block architectures containing domains with high brush grafting density and others with no observable brushes. This finding is possibly a result of dynamic behavior unique to supramolecular polymer backbones, enabling molecular exchange or translational diffusion of monomers along the length of the assemblies. The hybrid bottlebrush polymers exhibited higher solution viscosity at moderate shear, protected supramolecular polymer backbones from disassembly at high shear, and supported self-healing capabilities, depending on grafting densities. Our results demonstrate an opportunity for novel properties in easily synthesized bottlebrush polymer architectures built with supramolecular polymers that might be useful in biomedical applications or for aqueous lubrication.

2.
Angew Chem Int Ed Engl ; 62(17): e202214997, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36861407

RESUMO

Supramolecular polymerization of π-conjugated amphiphiles in water is an attractive approach to create functional nanostructures. Here, we report on the synthesis, optoelectronic and electrochemical properties, aqueous supramolecular polymerization, and conductivity of polycyclic aromatic dicarboximide amphiphiles. The chemical structure of the model perylene monoimide amphiphile was modified with heterocycles, essentially substituting one fused benzene ring with thiophene, pyridine or pyrrole rings. All the heterocycle-containing monomers investigated underwent supramolecular polymerization in water. Large changes to the monomeric molecular dipole moments led to nanostructures with low electrical conductivity due to diminished interactions. Although the substitution of benzene with thiophene did not notably change the monomer dipole moment, it led to crystalline nanoribbons with 20-fold higher electrical conductivity, due to enhanced dispersion interactions as a result of the presence of sulfur atoms.

3.
J Am Chem Soc ; 144(12): 5562-5574, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35296133

RESUMO

Supramolecular peptide chemistry offers a versatile strategy to create chemical systems useful as new biomaterials with potential to deliver nearly 1000 known candidate peptide therapeutics or integrate other types of bioactivity. We report here on the co-assembly of lipidated ß-sheet-forming peptides with soluble short peptides, yielding supramolecular copolymers with various degrees of internal order. At low peptide concentrations, the co-monomer is protected by lodging within internal aqueous compartments and stabilizing internal ß-sheets formed by the lipidated peptides. At higher concentrations, the peptide copolymerizes with the lipidated peptide and disrupts the ß-sheet secondary structure. The thermodynamic metastability of the co-assembly in turn leads to the spontaneous release of peptide monomers and thus serves as a potential mechanism for drug delivery. We demonstrated the function of these supramolecular systems using a drug candidate for Alzheimer's disease and found that the copolymers enhance neuronal cell viability when the soluble peptide is released from the assemblies.


Assuntos
Peptídeos , Polímeros , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica em Folha beta , Estrutura Secundária de Proteína , Termodinâmica
4.
J Am Chem Soc ; 144(36): 16512-16523, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36049084

RESUMO

Pathways in supramolecular polymerization traverse different regions of the system's energy landscape, affecting not only their architectures and internal structure but also their functions. We report here on the effects of pathway selection on polymerization for two isomeric peptide amphiphile monomers with amino acid sequences AAEE and AEAE. We subjected the monomers to five different pathways that varied in the order they were exposed to electrostatic screening by electrolytes and thermal annealing. We found that introducing electrostatic screening of E residues before annealing led to crystalline packing of AAEE monomers. Electrostatic screening decreased intermolecular repulsion among AAEE monomers thus promoting internal order within the supramolecular polymers, while subsequent annealing brought them closer to thermodynamic equilibrium with enhanced ß-sheet secondary structure. In contrast, supramolecular polymerization of AEAE monomers was less pathway dependent, which we attribute to side-chain dimerization. Regardless of the pathway, the internal structure of AEAE nanostructures had limited internal order and moderate ß-sheet structure. These supramolecular polymers generated hydrogels with lower porosity and greater bulk mechanical strength than those formed by the more cohesive AAEE polymers. The combination of dynamic, less ordered internal structure and bulk strength of AEAE networks promoted strong cell-material interactions in adherent epithelial-like cells, evidenced by increased cytoskeletal remodeling and cell spreading. The highly ordered AAEE nanostructures formed porous hydrogels with inferior bulk mechanical properties and weaker cell-material interactions. We conclude that pathway sensitivity in supramolecular synthesis, and therefore structure and function, is highly dependent on the nature of dominant interactions driving polymerization.


Assuntos
Peptídeos , Polímeros , Sequência de Aminoácidos , Hidrogéis , Peptídeos/química , Polimerização , Polímeros/química
5.
J Am Chem Soc ; 144(7): 3127-3136, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35143726

RESUMO

There has been rapid progress on the chemistry of supramolecular scaffolds that harness sunlight for aqueous photocatalytic production of hydrogen. However, great efforts are still needed to develop similar photosynthetic systems for the great challenge of CO2 reduction especially if they avoid the use of nonabundant metals. This work investigates the synthesis of supramolecular polymers capable of sensitizing catalysts that require more negative potentials than proton reduction. The monomers are chromophore amphiphiles based on a diareno-fused ullazine core that undergo supramolecular polymerization in water to create entangled nanoscale fibers. Under 450 nm visible light these fibers sensitize a dinuclear cobalt catalyst for CO2 photoreduction to generate carbon monoxide and methane using a sacrificial electron donor. The supramolecular photocatalytic system can generate amounts of CH4 comparable to those obtained with a precious metal-based [Ru(phen)3](PF6)2 sensitizer and, in contrast to Ru-based catalysts, retains photocatalytic activity in all aqueous media over 6 days. The present study demonstrates the potential of tailored supramolecular polymers as renewable energy and sustainability materials.

6.
Nano Lett ; 21(14): 6146-6155, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34259001

RESUMO

The morphology of supramolecular peptide nanostructures is difficult to predict given their complex energy landscapes. We investigated peptide amphiphiles containing ß-sheet forming domains that form twisted nanoribbons in water. We explained the morphology based on a balance between the energetically favorable packing of molecules in the center of the nanostructures, the unfavorable packing at the edges, and the deformations due to packing of twisted ß-sheets. We find that morphological polydispersity of PA nanostructures is determined by peptide sequences, and the twisting of their internal ß-sheets. We also observed a change in the supramolecular chirality of the nanostructures as the peptide sequence was modified, although only amino acids with l-configuration were used. Upon increasing charge repulsion between molecules, we observed a change in morphology to long cylinders and then rodlike fragments and spherical micelles. Understanding the self-assembly mechanisms of peptide amphiphiles into nanostructures should be useful to optimize their well-known functions.


Assuntos
Nanoestruturas , Peptídeos , Sequência de Aminoácidos , Aminoácidos , Água
7.
Nano Lett ; 21(9): 3745-3752, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33877843

RESUMO

The control of morphology in bioinspired chromophore assemblies is key to the rational design of functional materials for light harvesting. We investigate here morphological changes in perylene monoimide chromophore assemblies during thermal annealing in aqueous environments of high ionic strength to screen electrostatic repulsion. We found that annealing under these conditions leads to the growth of extra-large ribbon-shaped crystalline supramolecular polymers of widths from about 100 nm to several micrometers and lengths from 1 to 10 µm while still maintaining a unimolecular thickness. This growth process was monitored by variable-temperature absorbance spectroscopy, synchrotron X-ray scattering, and confocal microscopy. The extra-large single-crystal-like supramolecular polymers are highly porogenic, thus creating loosely packed hydrogel scaffolds that showed greatly enhanced photocatalytic hydrogen production with turnover numbers as high as 13 500 over ∼110 h compared to 7500 when smaller polymers are used. Our results indicate great functional opportunities in thermally and pathway-controlled supramolecular polymerization.


Assuntos
Perileno , Hidrogênio , Polimerização , Polímeros , Eletricidade Estática
8.
Angew Chem Int Ed Engl ; 61(40): e202208679, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35904930

RESUMO

Here, we report an approach to the synthesis of highly charged enantiopure cyclophanes by the insertion of axially chiral enantiomeric binaphthyl fluorophores into the constitutions of pyridinium-based macrocycles. Remarkably, these fluorescent tetracationic cyclophanes exhibit a significant AIE compared to their neutral optically active binaphthyl precursors. A combination of theoretical calculations and time-resolved spectroscopy reveal that the AIE originates from limited torsional vibrations associated with the axes of chirality present in the chiral enantiomeric binaphthyl units and the fine-tuning of their electronic landscape when incorporated within the cyclophane structure. Furthermore, these highly charged enantiopure cyclophanes display CPL responses both in solution and in the aggregated state. This unique duality of AIE and CPL in these tetracationic cyclophanes is destined to be of major importance in future development of photonic devices and bio-applications.


Assuntos
Luminescência , Medições Luminescentes , Corantes Fluorescentes/química , Medições Luminescentes/métodos , Estereoisomerismo
9.
Small ; 17(5): e2005743, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448102

RESUMO

Liquid crystalline hydrogels are an attractive class of soft materials to direct charge transport, mechanical actuation, and cell migration. When such systems contain supramolecular polymers, it is possible in principle to easily shear align nanoscale structures and create bulk anisotropic properties. However, reproducibly fabricating and patterning aligned supramolecular domains in 3D hydrogels remains a challenge using conventional fabrication techniques. Here, a method is reported for 3D printing of ionically crosslinked liquid crystalline hydrogels from aqueous supramolecular polymer inks. Using a combination of experimental techniques and molecular dynamics simulations, it is found that pH and salt concentration govern intermolecular interactions among the self-assembled structures where lower charge densities on the supramolecular polymers and higher charge screening from the electrolyte result in higher viscosity inks. Enhanced hierarchical interactions among assemblies in high viscosity inks increase the printability and ultimately lead to greater nanoscale alignment in extruded macroscopic filaments when using small nozzle diameters and fast print speeds. The use of this approach is demonstrated to create materials with anisotropic ionic and electronic charge transport as well as scaffolds that trigger the macroscopic alignment of cells due to the synergy of supramolecular self-assembly and additive manufacturing.


Assuntos
Hidrogéis , Impressão Tridimensional , Matriz Extracelular , Polímeros , Viscosidade
10.
Nat Mater ; 19(8): 900-909, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572204

RESUMO

The development of synthetic structures that mimic mechanical actuation in living matter such as autonomous translation and shape changes remains a grand challenge for materials science. In living systems the integration of supramolecular structures and covalent polymers contributes to the responsive behaviour of membranes, muscles and tendons, among others. Here we describe hybrid light-responsive soft materials composed of peptide amphiphile supramolecular polymers chemically bonded to spiropyran-based networks that expel water in response to visible light. The supramolecular polymers form a reversibly deformable and water-draining skeleton that mechanically reinforces the hybrid and can also be aligned by printing methods. The noncovalent skeleton embedded in the network thus enables faster bending and flattening actuation of objects, as well as longer steps during the light-driven crawling motion of macroscopic films. Our work suggests that hybrid bonding polymers, which integrate supramolecular assemblies and covalent networks, offer strategies for the bottom-up design of soft matter that mimics living organisms.


Assuntos
Biomimética , Luz , Fenômenos Mecânicos , Polímeros/química , Hidrogéis/química , Isomerismo , Processos Fotoquímicos
11.
Soft Matter ; 17(19): 4949-4956, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34008682

RESUMO

Hierarchical self-assembly leading to organized supramolecular structures across multiple length scales has been of great recent interest. Earlier work from our laboratory reported the complexation of peptide amphiphile (PA) supramolecular polymers with oppositely charged polyelectrolytes into a single solid membrane at a macroscopic interface. We report here the formation of bulk gels with many internal interfaces between the covalent and supramolecular polymer components formed by the rapid chaotic mixing of solutions, one containing negatively charged PA nanofibers and the other the positively charged biopolymer chitosan. We found that formation of a contact layer at the interface of the solutions locks the formation of hydrogels with lamellar microstructure. The nanofiber morphology of the supramolecular polymer is essential to this process since gels do not form when solutions of supramolecular assemblies form spherical micelles. We found that rheological properties of the gels can be tuned by changing the relative amounts of each component. Furthermore, both positively and negatively charged proteins are easily encapsulated within the contact layer of the gel, which provides an interesting biomedical function for these systems.


Assuntos
Nanofibras , Hidrogéis , Peptídeos , Polieletrólitos , Reologia
12.
Nano Lett ; 20(6): 4234-4241, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32383889

RESUMO

The morphogenesis of supramolecular assemblies is a highly dynamic process that has only recently been recognized, and our understanding of this phenomenon will require imaging techniques capable of crossing scales. Shape transformations depend both on the complex energy landscapes of supramolecular systems and the kinetically controlled pathways that define their structures and functions. We report here the use of confocal laser scanning microscopy coupled with a custom-designed variable-temperature sample stage that enables in situ observation of such shape changes. The submicrometer resolution of this technique allows for real-time observation of the nanostructures in the native liquid environments in which they transform with thermal energy. We use this technique to study the temperature-dependent morphogenic behavior of peptide amphiphile nanofibers and photocatalytic chromophore amphiphile nanoribbons. The variable-temperature confocal microscopy technique demonstrated in this work can sample a large volume and provides real-time information on thermally induced morphological changes in the solution.


Assuntos
Microscopia Confocal , Morfogênese , Nanofibras , Nanoestruturas , Temperatura
13.
J Am Chem Soc ; 142(28): 12216-12225, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32598851

RESUMO

Hierarchical assemblies of proteins into fibrillar structures occur in both physiologic and pathologic extracellular spaces and often involve interactions between oppositely charged peptide domains. However, the interplay between tertiary structure dynamics and quaternary hierarchical structure formation remains unclear. In this work, we investigate supramolecular mimics of these systems by mixing one-dimensional assemblies of small alkylated peptides bearing opposite charge and varying in peptide sequence. We found that assemblies with weak cohesive interactions readily create fibrous superstructures of bundled filaments as molecules redistribute upon mixing. Low cohesion allows molecules to escape from the original assemblies and exchange dynamics help them reassemble into electrostatically stable bundles. However, we also found that kinetic barriers can be encountered in these systems and limit formation of the hierarchical structures at pH values where charge densities are high. Increasing intermolecular cohesion using longer peptide sequences that form stable ß-sheets was found to suppress superstructure formation. Our findings suggest that low internal cohesion in protein systems could facilitate the conformational rearrangements required to create hierarchical structures.


Assuntos
Peptídeos/química , Proteínas/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Tamanho da Partícula , Peptídeos/síntese química , Conformação Proteica , Proteínas/síntese química , Propriedades de Superfície
14.
J Am Chem Soc ; 140(23): 7313-7323, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29869499

RESUMO

Layered perovskites with the formula (R-NH3)2PbI4 have excellent environmental stability but poor photovoltaic function due to the preferential orientation of the semiconducting layer parallel to the substrate and the typically insulating nature of the R-NH3+ cation. Here, we report a series of these n = 1 layered perovskites with the form (aromatic- O-linker-NH3)2PbI4 where the aromatic moiety is naphthalene, pyrene, or perylene and the linker is ethyl, propyl, or butyl. These materials achieve enhanced conductivity perpendicular to the inorganic layers due to better energy level matching between the inorganic layers and organic galleries. The enhanced conductivity and visible absorption of these materials led to a champion power conversion efficiency of 1.38%, which is the highest value reported for any n = 1 layered perovskite, and it is an order of magnitude higher efficiency than any other n = 1 layered perovskite oriented with layers parallel to the substrate. These findings demonstrate the importance of leveraging the electronic character of the organic cation to improve optoelectronic properties and thus the photovoltaic performance of these chemically stable low n layered perovskites.

15.
J Am Chem Soc ; 140(15): 4965-4968, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29624383

RESUMO

The spontaneous self-assembly of chromophores into light-harvesting antennae provides a potentially low-cost approach to building solar-to-fuel conversion materials. However, designing such supramolecular architectures requires a better understanding of the balance between noncovalent forces among the molecular components. We investigated here the aqueous assembly of perylene monoimide chromophore amphiphiles synthesized with different substituents in the 9-position. The molecular dipole strength decreases as the nature of the substituent is altered from electron donating to electron withdrawing. Compounds with stronger molecular dipoles, in which dipolar interactions stabilize assemblies by 10-15 kJ·mol-1, were found to form crystalline nanoribbons in solution. In contrast, when the molecular dipole moment is small, nanofibers were obtained. Highly blue-shifted absorption maxima were observed in assemblies with large dipoles, indicating strong electronic coupling is present. However, only the moderate dipole compound had the appropriate molecular packing to access charge-transfer excitons leading to enhanced photocatalytic H2 production.


Assuntos
Hidrogênio/química , Perileno/química , Catálise , Elétrons , Estrutura Molecular , Processos Fotoquímicos
16.
J Am Chem Soc ; 139(17): 6120-6127, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28436654

RESUMO

The energy landscape of a supramolecular material can include different molecular packing configurations that differ in stability and function. We report here on a thermally driven crystalline order transition in the landscape of supramolecular nanostructures formed by charged chromophore amphiphiles in salt-containing aqueous solutions. An irreversible transition was observed from a metastable to a stable crystal phase within the nanostructures. In the stable crystalline phase, the molecules end up organized in a short scroll morphology at high ionic strengths and as long helical ribbons at lower salt content. This is interpreted as the result of the competition between electrostatic repulsive forces and attractive molecular interactions. Only the stable phase forms charge-transfer excitons upon exposure to visible light as indicated by absorbance and fluorescence features, second-order harmonic generation microscopy, and femtosecond transient absorbance spectroscopy. Interestingly, the supramolecular reconfiguration to the stable crystalline phase nanostructures enhances photosensitization of a proton reduction catalyst for hydrogen production.


Assuntos
Imidas/química , Perileno/química , Catálise , Cristalização , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular , Nanoestruturas/química , Tamanho da Partícula , Transição de Fase , Processos Fotoquímicos , Eletricidade Estática , Propriedades de Superfície , Termodinâmica
17.
Nano Lett ; 16(1): 651-5, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26669906

RESUMO

Stimuli-responsive materials have attracted great interest in catalysis, sensing, and drug delivery applications and are typically constituted by soft components. We present a one-pot synthetic method for a type of inorganic silica-based shape change material that is responsive to water vapor exposure. After the wetting treatment, the cross-sectional shape of aminated mesoporous silica nanoparticles (MSNs) with hexagonal pore lattice changed from hexagonal to six-angle-star, accompanied by the loss of periodic mesostructural order. Nitrogen sorption measurements suggested that the wetting treatment induced a shrinkage of mesopores resulting in a broad size distribution and decreased mesopore volume. Solid-state (29)Si nuclear magnetic resonance (NMR) spectroscopy of samples after wetting treatment displayed a higher degree of silica condensation, indicating that the shape change was associated with the formation of more siloxane bonds within the silica matrix. On the basis of material characterization results, a mechanism for the observed anisotropic shrinkage is suggested based on a buckling deformation induced by capillary forces in the presence of a threshold amount of water vapor available beyond a humidity of about 50%. The work presented here may open a path toward novel stimuli-responsive materials based on inorganic components.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Dióxido de Silício/química , Humanos , Umidade , Espectroscopia de Ressonância Magnética , Porosidade
19.
J Am Chem Soc ; 137(6): 2350-8, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25625616

RESUMO

Methylammonium lead halide perovskite solar cells continue to excite the research community due to their rapidly increasing performance which, in large part, is due to improvements in film morphology. The next step in this progression is control of the crystal morphology which requires a better fundamental understanding of the crystal growth. In this study we use in situ X-ray scattering data to study isothermal transformations of perovskite films derived from chloride, iodide, nitrate, and acetate lead salts. Using established models we determine the activation energy for crystallization and find that it changes as a function of the lead salt. Further analysis enabled determination of the precursor composition and showed that the primary step in perovskite formation is removal of excess organic salt from the precursor. This understanding suggests that careful choice of the lead salt will aid in controlling crystal growth, leading to superior films and better performing solar cells.


Assuntos
Compostos de Cálcio/química , Halogênios/química , Compostos Inorgânicos/química , Compostos Orgânicos/química , Óxidos/química , Titânio/química , Ânions , Cristalização , Cinética
20.
ACS Nano ; 18(24): 15878-15887, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848478

RESUMO

The functionality of supramolecular nanostructures can be expanded if systems containing multiple components are designed to either self-sort or mix into coassemblies. This is critical to gain the ability to craft self-assembling materials that integrate functions, and our understanding of this process is in its early stages. In this work, we have utilized three different peptide amphiphiles with the capacity to form ß-sheets within supramolecular nanostructures and found binary systems that self-sort and others that form coassemblies. This was measured using atomic force microscopy to reveal the nanoscale morphology of assemblies and confocal laser scanning microscopy to determine the distribution of fluorescently labeled monomers. We discovered that PA assemblies with opposite supramolecular chirality self-sorted into chemically distinct nanostructures. In contrast, the PA molecules that formed a mixture of right-handed, left-handed, and flat nanostructures on their own were able to coassemble with the other PA molecules. We attribute this phenomenon to the energy barrier associated with changing the handedness of a ß-sheet twist in a coassembly of two different PA molecules. This observation could be useful for designing biomolecular nanostructures with dual bioactivity or interpenetrating networks of PA supramolecular assemblies.


Assuntos
Nanoestruturas , Peptídeos , Nanoestruturas/química , Peptídeos/química , Substâncias Macromoleculares/química , Tensoativos/química , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa