Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioelectromagnetics ; 42(7): 575-582, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34337771

RESUMO

The hazardous consequences of electromagnetic field (EMF) exposure represent a public health concern. Common sources of EMF include smartphones and wireless fidelity (Wi-Fi). The aim of our study is to assess whether exposure to Wi-Fi radiofrequency radiation influences the pathogenic traits of carbapenem-resistant Klebsiella pneumoniae. The susceptibility to antibiotics was evaluated by the determination of minimum inhibitory concentrations (MIC). In this study, K. pneumoniae showed a non-linear response to treatments with Colistin and Gentamycin following different Wi-Fi exposure periods. Transmission electron microscopy revealed morphological changes in the bacterial cell membrane within 24 h of Wi-Fi exposure. Crystal violet quantification and quantitative real-time polymerase chain reaction showed that the ability to form biofilms was greater in Wi-Fi exposed K. pnemoniae when compared to control. Moreover, higher levels of bcsA, mrkA, and luxS messenger RNAs were observed. Our data suggest that Wi-Fi exposure can influence bacteria in a stressful way, leading to an alteration in their antibiotic susceptibility, morphological changes, and cumulative biofilm formation. © 2021 Bioelectromagnetics Society.


Assuntos
Klebsiella pneumoniae , Ondas de Rádio , Carbapenêmicos/farmacologia , Campos Eletromagnéticos , Ondas de Rádio/efeitos adversos
2.
Front Microbiol ; 14: 1237564, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38390219

RESUMO

The ability of human cells to adapt to space radiation is essential for the well-being of astronauts during long-distance space expeditions, such as voyages to Mars or other deep space destinations. However, the adaptation of the microbiomes should not be overlooked. Microorganisms inside an astronaut's body, or inside the space station or other spacecraft, will also be exposed to radiation, which may induce resistance to antibiotics, UV, heat, desiccation, and other life-threatening factors. Therefore, it is essential to consider the potential effects of radiation not only on humans but also on their microbiomes to develop effective risk reduction strategies for space missions. Studying the human microbiome in space missions can have several potential benefits, including but not limited to a better understanding of the major effects space travel has on human health, developing new technologies for monitoring health and developing new radiation therapies and treatments. While radioadaptive response in astronauts' cells can lead to resistance against high levels of space radiation, radioadaptive response in their microbiome can lead to resistance against UV, heat, desiccation, antibiotics, and radiation. As astronauts and their microbiomes compete to adapt to the space environment. The microorganisms may emerge as the winners, leading to life-threatening situations due to lethal infections. Therefore, understanding the magnitude of the adaptation of microorganisms before launching a space mission is crucial to be able to develop effective strategies to mitigate the risks associated with radiation exposure. Ensuring the safety and well-being of astronauts during long-duration space missions and minimizing the risks linked with radiation exposure can be achieved by adopting this approach.

3.
Sci Rep ; 9(1): 14425, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31595026

RESUMO

This study investigated the non-thermal effects of Wi-Fi radiofrequency radiation of 2.4 GHz on global gene expression in Escherichia coli K-12 DH5α. High-throughput RNA-sequencing of 2.4 GHz exposed and non-exposed bacteria revealed that 101 genes were differentially expressed (DEGs) at P ≤ 0.05. The up-regulated genes were 52 while the down-regulated ones were 49. QRT-PCR analysis of pgaD, fliC, cheY, malP, malZ, motB, alsC, alsK, appB and appX confirmed the RNA-seq results. About 7% of DEGs are involved in cellular component organization, 6% in response to stress stimulus, 6% in biological regulation, 6% in localization, 5% in locomotion and 3% in cell adhesion. Database for annotation, visualization and integrated discovery (DAVID) functional clustering revealed that DEGs with high enrichment score included genes for localization of cell, locomotion, chemotaxis, response to external stimulus and cell adhesion. Kyoto encyclopedia of genes and genomes (KEGG) pathways analysis showed that the pathways for flagellar assembly, chemotaxis and two-component system were affected. Go enrichment analysis indicated that the up-regulated DEGs are involved in metabolic pathways, transposition, response to stimuli, motility, chemotaxis and cell adhesion. The down-regulated DEGs are associated with metabolic pathways and localization of ions and organic molecules. Therefore, the exposure of E. coli DH5α to Wi-Fi radiofrequency radiation for 5 hours influenced several bacterial cellular and metabolic processes.


Assuntos
Radiação Eletromagnética , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Transcriptoma/efeitos da radiação , Escherichia coli K12/efeitos da radiação , Perfilação da Expressão Gênica , Software , Tecnologia sem Fio
4.
Gene ; 330: 9-18, 2004 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-15087119

RESUMO

TBX5 is a member of the T-box gene family and encodes a transcription factor involved in cardiac and limb development. Mutations of TBX5 cause Holt-Oram syndrome (HOS), an autosomal-dominant condition with congenital cardiac defects and forelimb anomalies. Here, we used a GAL4-TBX5 fusion protein in a modified yeast-one hybrid system to elucidate the TBX5 transactivating domain. Using a series of deletion mutations of TBX5, we narrowed down its functional domain to amino acids 339-379 of its C-terminal half; point mutagenesis analysis then showed that the loss of amino acids 349-351 abolished transactivation. This result was confirmed in mammalian cells. Furthermore, wild-type TBX5, but not TBX5 with mutations at the amino acids 349-351, has ability to inhibit NCI-H1299 cell growth also suggesting that these amino acids are crucial for the TBX5 function in mammalian cells. In addition, to identify the nuclear localization signal of TBX5, we searched for cluster of basic amino acids. We found that the deletion of the KRK sequence at amino acids 325-327 mislocalizes TBX5 to cytoplasm, suggesting that these amino acids serve as a nuclear localization signal. These studies enhance our understanding of the structure-function relationship of TBX5 and suggest that truncation mutations of TBX5 could cause HOS through the loss of its transactivating domain and/or the nuclear localization signal.


Assuntos
Sinais de Localização Nuclear/genética , Proteínas com Domínio T/genética , Ativação Transcricional/genética , Células 3T3 , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Divisão Celular/genética , Divisão Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Plasmídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Proteínas com Domínio T/fisiologia , Transativadores/genética , Transativadores/fisiologia , Ativação Transcricional/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa