Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(8): e1010321, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35969643

RESUMO

Cryptococcosis is a potentially lethal fungal infection of humans caused by organisms within the Cryptococcus neoformans/gattii species complex. Whilst C. neoformans is a relatively common pathogen of immunocompromised individuals, C. gattii is capable of acting as a primary pathogen of immunocompetent individuals. Within the host, both species undergo morphogenesis to form titan cells: exceptionally large cells that are critical for disease establishment. To date, the induction, defining attributes, and underlying mechanism of titanisation have been mainly characterized in C. neoformans. Here, we report the serendipitous discovery of a simple and robust protocol for in vitro induction of titan cells in C. gattii. Using this in vitro approach, we reveal a remarkably high capacity for titanisation within C. gattii, especially in strains associated with the Pacific Northwest Outbreak, and characterise strain-specific differences within the clade. In particular, this approach demonstrates for the first time that cell size changes, DNA amplification, and budding are not always synchronous during titanisation. Interestingly, however, exhibition of these cell cycle phenotypes was correlated with genes associated with cell cycle progression including CDC11, CLN1, BUB2, and MCM6. Finally, our findings reveal exogenous p-Aminobenzoic acid to be a key inducer of titanisation in this organism. Consequently, this approach offers significant opportunities for future exploration of the underlying mechanism of titanisation in this genus.


Assuntos
Cryptococcus gattii , Cryptococcus neoformans , Proteínas Fúngicas , Humanos , Hospedeiro Imunocomprometido , Componente 6 do Complexo de Manutenção de Minicromossomo
3.
PLoS Negl Trop Dis ; 16(12): e0010916, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36520688

RESUMO

Members of Cryptococcus gattii/neoformans species complex are the etiological agents of the potentially fatal human fungal infection cryptococcosis. C. gattii and its sister species cause disease in both immunocompetent and immunocompromised hosts, while the closely related species C. neoformans and C. deneoformans predominantly infect immunocompromised hosts. To date, most studies have focused on similarities in pathogenesis between these two groups, but over recent years, important differences have become apparent. In this review paper, we highlight some of the major phenotypic differences between the C. gattii and neoformans species complexes and justify the need to study the virulence and pathogenicity of the C. gattii species complex as a distinct cryptococcal group.


Assuntos
Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Humanos , Cryptococcus gattii/genética , Virulência , Criptococose/microbiologia , Hospedeiro Imunocomprometido
4.
Int J Nanomedicine ; 11: 661-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26929622

RESUMO

A local antibiotic delivery system (LADS) with biodegradable drug vehicles is recognized as the most effective therapeutic approach for the treatment of osteomyelitis. However, the design of a biodegradable LADS with high therapeutic efficacy is too costly and demanding. In this research, a low-cost, facile method was used to design vancomycin-loaded aragonite nanoparticles (VANPs) with the aim of understanding its potency in developing a nanoantibiotic bone implant for the treatment of osteomyelitis. The aragonite nanoparticles (ANPs) were synthesized from cockle shells by a hydrothermal approach using a zwitterionic surfactant. VANPs were prepared using antibiotic ratios of several nanoparticles, and the formulation (1:4) with the highest drug-loading efficiency (54.05%) was used for physicochemical, in vitro drug release, and biological evaluation. Physiochemical characterization of VANP was performed by using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, and Zetasizer. No significant differences were observed between VANP and ANP in terms of size and morphology as both samples were cubic shaped with sizes of approximately 35 nm. The Fourier transform infrared spectroscopy of VANP indicated a weak noncovalent interaction between ANP and vancomycin, while the zeta potential values were slightly increased from -19.4±3.3 to -21.2±5.7 mV after vancomycin loading. VANP displayed 120 hours (5 days) release profile of vancomycin that exhibited high antibacterial effect against methicillin-resistant Staphylococcus aureus ATCC 29213. The cell proliferation assay showed 80% cell viability of human fetal osteoblast cell line 1.19 treated with the highest concentration of VANP (250 µg/mL), indicating good biocompatibility of VANP. In summary, VANP is a potential formulation for the development of an LADS against osteomyelitis with optimal antibacterial efficacy, good bone resorbability, and biocompatibility.


Assuntos
Exoesqueleto/química , Antibacterianos/farmacologia , Carbonato de Cálcio/química , Cardiidae/química , Nanopartículas/química , Osteomielite/tratamento farmacológico , Vancomicina/farmacologia , Animais , Antibacterianos/química , Células Cultivadas , Química Farmacêutica , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feto/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Nanopartículas/administração & dosagem , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteomielite/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa