Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612757

RESUMO

Wildtype Escherichia coli cells cannot grow on L-1,2-propanediol, as the fucAO operon within the fucose (fuc) regulon is thought to be silent in the absence of L-fucose. Little information is available concerning the transcriptional regulation of this operon. Here, we first confirm that fucAO operon expression is highly inducible by fucose and is primarily attributable to the upstream operon promoter, while the fucO promoter within the 3'-end of fucA is weak and uninducible. Using 5'RACE, we identify the actual transcriptional start site (TSS) of the main fucAO operon promoter, refuting the originally proposed TSS. Several lines of evidence are provided showing that the fucAO locus is within a transcriptionally repressed region on the chromosome. Operon activation is dependent on FucR and Crp but not SrsR. Two Crp-cAMP binding sites previously found in the regulatory region are validated, where the upstream site plays a more critical role than the downstream site in operon activation. Furthermore, two FucR binding sites are identified, where the downstream site near the first Crp site is more important than the upstream site. Operon transcription relies on Crp-cAMP to a greater degree than on FucR. Our data strongly suggest that FucR mainly functions to facilitate the binding of Crp to its upstream site, which in turn activates the fucAO promoter by efficiently recruiting RNA polymerase.


Assuntos
Escherichia coli , Fucose , Sítios de Ligação , Escherichia coli/genética , Óperon/genética , Fosforilação
2.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732224

RESUMO

In this report we present seven lines of bioinformatic evidence supporting the conclusion that the Pentameric Ligand-gated Ion Channel (pLIC) Family is a member of the Voltage-gated Ion Channel (VIC) Superfamily. In our approach, we used the Transporter Classification Database (TCDB) as a reference and applied a series of bioinformatic methods to search for similarities between the pLIC family and members of the VIC superfamily. These include: (1) sequence similarity, (2) compatibility of topology and hydropathy profiles, (3) shared domains, (4) conserved motifs, (5) similarity of Hidden Markov Model profiles between families, (6) common 3D structural folds, and (7) clustering analysis of all families. Furthermore, sequence and structural comparisons as well as the identification of a 3-TMS repeat unit in the VIC superfamily suggests that the sixth transmembrane segment evolved into a re-entrant loop. This evidence suggests that the voltage-sensor domain and the channel domain have a common origin. The classification of the pLIC family within the VIC superfamily sheds light onto the topological origins of this family and its evolution, which will facilitate experimental verification and further research into this superfamily by the scientific community.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/genética , Humanos , Sequência de Aminoácidos , Biologia Computacional/métodos , Modelos Moleculares , Família Multigênica , Animais , Domínios Proteicos , Filogenia , Cadeias de Markov
3.
Nucleic Acids Res ; 49(D1): D461-D467, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33170213

RESUMO

The Transporter Classification Database (TCDB; tcdb.org) is a freely accessible reference resource, which provides functional, structural, mechanistic, medical and biotechnological information about transporters from organisms of all types. TCDB is the only transport protein classification database adopted by the International Union of Biochemistry and Molecular Biology (IUBMB) and now (October 1, 2020) consists of 20 653 proteins classified in 15 528 non-redundant transport systems with 1567 tabulated 3D structures, 18 336 reference citations describing 1536 transporter families, of which 26% are members of 82 recognized superfamilies. Overall, this is an increase of over 50% since the last published update of the database in 2016. This comprehensive update of the database contents and features include (i) adoption of a chemical ontology for substrates of transporters, (ii) inclusion of new superfamilies, (iii) a domain-based characterization of transporter families for the identification of new members as well as functional and evolutionary relationships between families, (iv) development of novel software to facilitate curation and use of the database, (v) addition of new subclasses of transport systems including 11 novel types of channels and 3 types of group translocators and (vi) the inclusion of many man-made (artificial) transmembrane pores/channels and carriers.


Assuntos
Bases de Dados de Proteínas , Proteínas de Membrana Transportadoras/química , Metagenômica , Domínios Proteicos , Software , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 116(28): 14309-14318, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227607

RESUMO

Sensing and responding to environmental water deficiency and osmotic stresses are essential for the growth, development, and survival of plants. Recently, an osmolality-sensing ion channel called OSCA1 was discovered that functions in sensing hyperosmolality in Arabidopsis Here, we report the cryo-electron microscopy (cryo-EM) structure and function of an OSCA1 homolog from rice (Oryza sativa; OsOSCA1.2), leading to a model of how it could mediate hyperosmolality sensing and transport pathway gating. The structure reveals a dimer; the molecular architecture of each subunit consists of 11 transmembrane (TM) helices and a cytosolic soluble domain that has homology to RNA recognition proteins. The TM domain is structurally related to the TMEM16 family of calcium-dependent ion channels and lipid scramblases. The cytosolic soluble domain possesses a distinct structural feature in the form of extended intracellular helical arms that are parallel to the plasma membrane. These helical arms are well positioned to potentially sense lateral tension on the inner leaflet of the lipid bilayer caused by changes in turgor pressure. Computational dynamic analysis suggests how this domain couples to the TM portion of the molecule to open a transport pathway. Hydrogen/deuterium exchange mass spectrometry (HDXMS) experimentally confirms the conformational dynamics of these coupled domains. These studies provide a framework to understand the structural basis of proposed hyperosmolality sensing in a staple crop plant, extend our knowledge of the anoctamin superfamily important for plants and fungi, and provide a structural mechanism for potentially translating membrane stress to transport regulation.


Assuntos
Anoctaminas/ultraestrutura , Proteínas de Arabidopsis/ultraestrutura , Canais de Cálcio/ultraestrutura , Oryza/ultraestrutura , Conformação Proteica , Sequência de Aminoácidos/genética , Anoctaminas/química , Anoctaminas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Microscopia Crioeletrônica , Citoplasma/genética , Espectrometria de Massas , Potenciais da Membrana/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Pressão Osmótica/fisiologia , Água/química
5.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142257

RESUMO

Using reporter gene (lacZ) transcriptional fusions, we examined the transcriptional dependencies of the bgl promoter (Pbgl) and the entire operon regulatory region (Pbgl-bglG) on eight transcription factors as well as the inducer, salicin, and an IS5 insertion upstream of Pbgl. Crp-cAMP is the primary activator of both Pbgl and the bgl operon, while H-NS is a strong dominant operon repressor but only a weak repressor of Pbgl. H-NS may exert its repressive effect by looping the DNA at two binding sites. StpA is a relatively weak repressor in the absence of H-NS, while Fis also has a weak repressive effect. Salicin has no effect on Pbgl activity but causes a 30-fold induction of bgl operon expression. Induction depends on the activity of the BglF transporter/kinase. IS5 insertion has only a moderate effect on Pbgl but causes a much greater activation of the bgl operon expression by preventing the full repressive effects of H-NS and StpA. While several other transcription factors (BglJ, RcsB, and LeuO) have been reported to influence bgl operon transcription when overexpressed, they had little or no effect when present at wild type levels. These results indicate the important transcriptional regulatory mechanisms operative on the bgl operon in E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Álcoois Benzílicos , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucosídeos , Óperon/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525632

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel epidemic strain of Betacoronavirus that is responsible for the current viral pandemic, coronavirus disease 2019 (COVID-19), a global health crisis. Other epidemic Betacoronaviruses include the 2003 SARS-CoV-1 and the 2009 Middle East Respiratory Syndrome Coronavirus (MERS-CoV), the genomes of which, particularly that of SARS-CoV-1, are similar to that of the 2019 SARS-CoV-2. In this extensive review, we document the most recent information on Coronavirus proteins, with emphasis on the membrane proteins in the Coronaviridae family. We include information on their structures, functions, and participation in pathogenesis. While the shared proteins among the different coronaviruses may vary in structure and function, they all seem to be multifunctional, a common theme interconnecting these viruses. Many transmembrane proteins encoded within the SARS-CoV-2 genome play important roles in the infection cycle while others have functions yet to be understood. We compare the various structural and nonstructural proteins within the Coronaviridae family to elucidate potential overlaps and parallels in function, focusing primarily on the transmembrane proteins and their influences on host membrane arrangements, secretory pathways, cellular growth inhibition, cell death and immune responses during the viral replication cycle. We also offer bioinformatic analyses of potential viroporin activities of the membrane proteins and their sequence similarities to the Envelope (E) protein. In the last major part of the review, we discuss complement, stimulation of inflammation, and immune evasion/suppression that leads to CoV-derived severe disease and mortality. The overall pathogenesis and disease progression of CoVs is put into perspective by indicating several stages in the resulting infection process in which both host and antiviral therapies could be targeted to block the viral cycle. Lastly, we discuss the development of adaptive immunity against various structural proteins, indicating specific vulnerable regions in the proteins. We discuss current CoV vaccine development approaches with purified proteins, attenuated viruses and DNA vaccines.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/metabolismo , Proteínas da Matriz Viral/metabolismo , Animais , Betacoronavirus/genética , Betacoronavirus/imunologia , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/patologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Genoma Viral , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Mapas de Interação de Proteínas , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Internalização do Vírus , Replicação Viral
7.
J Bacteriol ; 201(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31010904

RESUMO

The universal triple-nucleotide genetic code is often viewed as a given, randomly selected through evolution. However, as summarized in this article, many observations and deductions within structural and thermodynamic frameworks help to explain the forces that must have shaped the code during the early evolution of life on Earth.


Assuntos
Códon/genética , Código Genético , Aminoácidos/genética , Bactérias/genética , Evolução Molecular , Humanos , Modelos Genéticos
8.
J Biol Chem ; 293(40): 15725-15732, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30089654

RESUMO

Folate derivatives are important cofactors for enzymes in several metabolic processes. Folate-related inhibition and resistance mechanisms in bacteria are potential targets for antimicrobial therapies and therefore a significant focus of current research. Here, we report that the activity of Escherichia coli poly-γ-glutamyl tetrahydrofolate/dihydrofolate synthase (FolC) is regulated by glutamate/glutamine-sensing uridylyltransferase (GlnD), THF-dependent tRNA modification enzyme (MnmE), and UDP-glucose dehydrogenase (Ugd) as shown by direct in vitro protein-protein interactions. Using kinetics analyses, we observed that GlnD, Ugd, and MnmE activate FolC many-fold by decreasing the Khalf of FolC for its substrate l-glutamate. Moreover, FolC inhibited the GTPase activity of MnmE at low GTP concentrations. The growth phenotypes associated with these proteins are discussed. These results, obtained using direct in vitro enzyme assays, reveal unanticipated networks of allosteric regulatory interactions in the folate pathway in E. coli and indicate regulation of polyglutamylated tetrahydrofolate biosynthesis by the availability of nitrogen sources, signaled by the glutamine-sensing GlnD protein.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/genética , GTP Fosfo-Hidrolases/química , Regulação Bacteriana da Expressão Gênica , Complexos Multienzimáticos/química , Nucleotidiltransferases/química , Peptídeo Sintases/química , Uridina Difosfato Glucose Desidrogenase/química , Regulação Alostérica , Sítios de Ligação , Ensaios Enzimáticos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Fólico/biossíntese , Ácido Fólico/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Cinética , Simulação de Acoplamento Molecular , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Ácidos Pteroilpoliglutâmicos/biossíntese , Ácidos Pteroilpoliglutâmicos/química , RNA de Transferência/química , RNA de Transferência/metabolismo , Especificidade por Substrato , Termodinâmica , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Glucose Desidrogenase/metabolismo
9.
Microb Pathog ; 132: 87-99, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31029716

RESUMO

Treponema is a diverse bacterial genus, the species of which can be pathogenic, symbiotic, or free living. These treponemes can cause various diseases in humans and other animals, such as periodontal disease, bovine digital dermatitis and animal skin lesions. However, the most important and well-studied disease of treponemes that affects humans is 'syphilis'. This disease is caused by Treponema pallidum subspecie pallidum with 11-12 million new cases around the globe on an annual basis. In this study we analyze the transportome of ten Treponema species, with emphasis on the types of encoded transport proteins and their substrates. Of the ten species examined, two (T. primitia and T. azonutricium) reside as symbionts in the guts of termites; six (T. pallidum, T. paraluiscuniculi, T. pedis, T. denticola, T. putidum and T. brennaborense) are pathogens of either humans or animals, and T. caldarium and T. succinifaciens are avirulent species, the former being thermophilic. All ten species have a repertoire of transport proteins that assists them in residing in their respective ecological niches. For instance, oral pathogens use transport proteins that take up nutrients uniquely present in their ecosystem; they also encode multiple multidrug/macromolecule exporters that protect against antimicrobials and aid in biofilm formation. Proteins of termite gut symbionts convert cellulose into other sugars that can be metabolized by the host. As often observed for pathogens and symbionts, several of these treponemes have reduced genome sizes, and their small genomes correlate with their dependencies on the host. Overall, the transportomes of T. pallidum and other pathogens have a conglomerate of parasitic lifestyle-assisting proteins. For example, a T. pallidum repeat protein (TprK) mediates immune evasion; outer membrane proteins (OMPs) allow nutrient uptake and end product export, and several ABC transporters catalyze sugar uptake, considered pivotal to parasitic lifestyles. Taken together, the results of this study yield new information that may help open new avenues of treponeme research.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Genômica/métodos , Treponema/classificação , Treponema/genética , Treponema/fisiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Proteínas de Transporte/classificação , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal , Tamanho do Genoma , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Porinas/genética , Porinas/imunologia , Proteoma , Especificidade da Espécie , Especificidade por Substrato , Simbiose , Sífilis/microbiologia , Treponema/patogenicidade , Treponema pallidum/genética
10.
J Bacteriol ; 200(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229699

RESUMO

Amino sugars are good sources of both ammonia and fructose-6-phosphate, produced by the glucosamine 6-phosphate deaminase, NagB. NagB is known to be allosterically regulated by N-acetylglucosamine 6-phosphate (GlcNAc-6P) and the phosphocarrier protein of the bacterial phosphotransferase system, HPr, in Escherichia coli We provide evidence that NanE, GlcNAc-6P epimerase, and the uridylylated PII protein (U-PII) also allosterically activate NagB by direct protein-protein interactions. NanE is essential for neuraminic acid (NANA) and N-acetylmannosamine (ManNAc) utilization, and PII is known to be a central metabolic nitrogen regulator. We demonstrate that uridylylated PII (but not underivatized PII) activates NagB >10-fold at low concentrations of substrate, whereas NanE increases NagB activity >2-fold. NanE activates NagB in the absence or presence of GlcNAc-6P, but HPr and U-PII activation requires the presence of GlcNAc-6P. Activation of NagB by HPr and uridylylated PII, as well as by NanE and HPr (but not by NanE and U-PII), is synergistic, and the modeling, which suggests specific residues involved in complex formation, provides possible explanations. Specific physiological functions for the regulation of NagB by its three protein activators are proposed. Each regulatory agent is suggested to mediate signal transduction in response to a different stimulus.IMPORTANCE The regulation of amino sugar utilization is important for the survival of bacteria in a competitive environment. NagB, a glucosamine 6-phosphate deaminase in Escherichia coli, is essential for amino sugar utilization and is known to be allosterically regulated by N-acetylglucosamine 6-phosphate (GlcNAc-6P) and the histidine-phosphorylatable phosphocarrier protein, HPr. We provide evidence here that NanE, GlcNAc-6P epimerase, and the uridylylated PII protein allosterically activate NagB by direct protein-protein interactions. NanE is essential for N-acetylneuraminic acid (NANA) and N-acetylmannosamine (ManNAc) utilization, and the PII protein is known to be a central metabolic nitrogen regulator. Regulatory links between carbon and nitrogen metabolism are important for adaptation of metabolism to different growth conditions.


Assuntos
Acetilglucosamina/análogos & derivados , Aldose-Cetose Isomerases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas PII Reguladoras de Nitrogênio/genética , Racemases e Epimerases/genética , Acetilglucosamina/metabolismo , Acetilglucosamina/farmacologia , Aldose-Cetose Isomerases/efeitos dos fármacos , Aldose-Cetose Isomerases/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Glucose-6-Fosfato/análogos & derivados , Glucose-6-Fosfato/metabolismo , Hexosaminas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fosforilação , Mapeamento de Interação de Proteínas , Racemases e Epimerases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
11.
J Biol Chem ; 292(34): 14250-14257, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28634232

RESUMO

The histidine-phosphorylatable phosphocarrier protein (HPr) is an essential component of the sugar-transporting phosphotransferase system (PTS) in many bacteria. Recent interactome findings suggested that HPr interacts with several carbohydrate-metabolizing enzymes, but whether HPr plays a regulatory role was unclear. Here, we provide evidence that HPr interacts with a large number of proteins in Escherichia coli We demonstrate HPr-dependent allosteric regulation of the activities of pyruvate kinase (PykF, but not PykA), phosphofructokinase (PfkB, but not PfkA), glucosamine-6-phosphate deaminase (NagB), and adenylate kinase (Adk). HPr is either phosphorylated on a histidyl residue (HPr-P) or non-phosphorylated (HPr). PykF is activated only by non-phosphorylated HPr, which decreases the PykF Khalf for phosphoenolpyruvate by 10-fold (from 3.5 to 0.36 mm), thus influencing glycolysis. PfkB activation by HPr, but not by HPr-P, resulted from a decrease in the Khalf for fructose-6-P, which likely influences both gluconeogenesis and glycolysis. Moreover, NagB activation by HPr was important for the utilization of amino sugars, and allosteric inhibition of Adk activity by HPr-P, but not by HPr, allows HPr to regulate the cellular energy charge coordinately with glycolysis. These observations suggest that HPr serves as a directly interacting global regulator of carbon and energy metabolism and probably of other physiological processes in enteric bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glicólise , Modelos Moleculares , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Adenilato Quinase/química , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Metabolismo Energético , Ativação Enzimática , Escherichia coli/enzimologia , Proteínas de Escherichia coli/agonistas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Histidina/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Fosforilação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteômica , Piruvato Quinase/química , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
12.
Nucleic Acids Res ; 44(D1): D372-9, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26546518

RESUMO

The Transporter Classification Database (TCDB; http://www.tcdb.org) is a freely accessible reference database for transport protein research, which provides structural, functional, mechanistic, evolutionary and disease/medical information about transporters from organisms of all types. TCDB is the only transport protein classification database adopted by the International Union of Biochemistry and Molecular Biology (IUBMB). It consists of more than 10,000 non-redundant transport systems with more than 11 000 reference citations, classified into over 1000 transporter families. Transporters in TCDB can be single or multi-component systems, categorized in a functional/phylogenetic hierarchical system of classes, subclasses, families, subfamilies and transport systems. TCDB also includes updated software designed to analyze the distinctive features of transport proteins, extending its usefulness. Here we present a comprehensive update of the database contents and features and summarize recent discoveries recorded in TCDB.


Assuntos
Bases de Dados de Proteínas , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Análise de Sequência de Proteína
13.
Biochim Biophys Acta Biomembr ; 1859(3): 402-414, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27916633

RESUMO

Connexins or innexins form gap junctions, while claudins and occludins form tight junctions. In this study, statistical data, derived using novel software, indicate that these four junctional protein families and eleven other families of channel and channel auxiliary proteins are related by common descent and comprise the Tetraspan (4 TMS) Junctional Complex (4JC) Superfamily. These proteins all share similar 4 transmembrane α-helical (TMS) topologies. Evidence is presented that they arose via an intragenic duplication event, whereby a 2 TMS-encoding genetic element duplicated tandemly to give 4 TMS proteins. In cases where high resolution structural data were available, the conclusion of homology was supported by conducting structural comparisons. Phylogenetic trees reveal the probable relationships of these 15 families to each other. Long homologues containing fusions to other recognizable domains as well as internally duplicated or fused domains are reported. Large "fusion" proteins containing 4JC domains proved to fall predominantly into family-specific patterns as follows: (1) the 4JC domain was N-terminal; (2) the 4JC domain was C-terminal; (3) the 4JC domain was duplicated or occasionally triplicated and (4) mixed fusion types were present. Our observations provide insight into the evolutionary origins and subfunctions of these proteins as well as guides concerning their structural and functional relationships.


Assuntos
Proteínas de Membrana/química , Sequência de Aminoácidos , Animais , Claudinas/química , Claudinas/classificação , Conexinas/química , Conexinas/classificação , Junções Comunicantes/metabolismo , Proteínas de Membrana/classificação , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/química , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/classificação , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Junções Íntimas/metabolismo
14.
Microbiology (Reading) ; 163(4): 554-569, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28100305

RESUMO

The flagellar system in Escherichia coli K12 is expressed under the control of the flhDC-encoded master regulator FlhDC. Transposition of insertion sequence (IS) elements to the upstream flhDC promoter region up-regulates transcription of this operon, resulting in a more rapid motility. Wang and Wood (ISME J 2011;5:1517-1525) provided evidence that insertion of IS5 into upstream activating sites occurs at higher rates in semi-solid agar media in which swarming behaviour is allowed as compared with liquid or solid media where swarming cannot occur. We confirm this conclusion and show that three IS elements, IS1, IS3 and IS5, transpose to multiple upstream sites within a 370 bp region of the flhDC operon control region. Hot spots for IS insertion correlate with positions of stress-induced DNA duplex destabilization (SIDD). We show that IS insertion occurs at maximal rates in 0.24 % agar, with rates decreasing dramatically with increasing or decreasing agar concentrations. In mixed cultures, we show that these mutations preferentially arise from the wild-type parent at frequencies of up to 3×10-3 cell-1 day-1 when the inoculated parental and co-existing IS-activated mutant cells are entering the stationary growth phase. We rigorously show that the apparent increased mutation frequencies cannot be accounted for by increased swimming or by increased growth under the selective conditions used. Thus, our data are consistent with the possibility that appropriate environmental conditions, namely those that permit but hinder flagellar rotation, result in the activation of a mutational pathway that involves IS element insertion upstream of the flhDC operon.


Assuntos
Elementos de DNA Transponíveis/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Flagelos/genética , Regulação Bacteriana da Expressão Gênica/genética , Transativadores/genética , Escherichia coli K12/crescimento & desenvolvimento , Flagelos/metabolismo , Regiões Promotoras Genéticas/genética
15.
Brief Bioinform ; 16(5): 865-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25614388

RESUMO

Transport systems comprise roughly 10% of all proteins in a cell, playing critical roles in many processes. Improving and expanding their classification is an important goal that can affect studies ranging from comparative genomics to potential drug target searches. It is not surprising that different classification systems for transport proteins have arisen, be it within a specialized database, focused on this functional class of proteins, or as part of a broader classification system for all proteins. Two such databases are the Transporter Classification Database (TCDB) and the Protein family (Pfam) database. As part of a long-term endeavor to improve consistency between the two classification systems, we have compared transporter annotations in the two databases to understand the rationale for differences and to improve both systems. Differences sometimes reflect the fact that one database has a particular transporter family while the other does not. Differing family definitions and hierarchical organizations were reconciled, resulting in recognition of 69 Pfam 'Domains of Unknown Function', which proved to be transport protein families to be renamed using TCDB annotations. Of over 400 potential new Pfam families identified from TCDB, 10% have already been added to Pfam, and TCDB has created 60 new entries based on Pfam data. This work, for the first time, reveals the benefits of comprehensive database comparisons and explains the differences between Pfam and TCDB.


Assuntos
Bases de Dados de Proteínas , Proteínas/química
16.
Microb Pathog ; 107: 106-115, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28344124

RESUMO

Escherichia coli is a genetically diverse species that can be pathogenic, probiotic, commensal, or a harmless laboratory strain. Pathogenic strains of E. coli cause urinary tract infections, diarrhea, hemorrhagic colitis, and pyelonephritis, while the two known probiotic E. coli strains combat inflammatory bowel disease and play a role in immunomodulation. Salmonella enterica, a close relative of E. coli, includes two important pathogenic serovars, Typhi and Typhimurium, causing typhoid fever and enterocolitis in humans, respectively, with the latter strain also causing a lethal typhoid fever-like disease in mice. In this study, we identify the transport systems and their substrates within seven E. coli strains: two probiotic strains, two extracellular pathogens, two intracellular pathogens, and K-12, as well as the two intracellular pathogenic S. enterica strains noted above. Transport systems characteristic of each probiotic or pathogenic species were thus identified, and the tabulated results obtained with all of these strains were compared. We found that the probiotic and pathogenic strains generally contain more iron-siderophore and sugar transporters than E. coli K-12. Pathogens have increased numbers of pore-forming toxins, protein secretion systems, decarboxylation-driven Na+ exporters, electron flow-driven monovalent cation exporters, and putative transporters of unknown function compared to the probiotic strains. Both pathogens and probiotic strains encode metabolite transporters that reflect their intracellular versus extracellular environments. The results indicate that the probiotic strains live extracellularly. It seems that relatively few virulence factors can convert a beneficial or commensal microorganism into a pathogen. Taken together, the results reveal the distinguishing features of these strains and provide a starting point for future engineering of beneficial enteric bacteria.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Escherichia coli/genética , Genômica , Probióticos/metabolismo , Salmonella enterica/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Infecções por Escherichia coli/microbiologia , Genoma Bacteriano/genética , Infecções por Salmonella/microbiologia , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidade , Salmonella typhi/metabolismo , Salmonella typhimurium/metabolismo , Sideróforos , Fatores de Virulência/metabolismo
17.
J Phycol ; 53(3): 503-521, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28328149

RESUMO

Galdieria sulphuraria and Cyanidioschyzon merolae are thermo-acidophilic unicellular red algal cousins capable of living in volcanic environments, although the former can additionally thrive in the presence of toxic heavy metals. Bioinformatic analyses of transport systems were carried out on their genomes, as well as that of the mesophilic multicellular red alga Chondrus crispus (Irish moss). We identified transport proteins related to the metabolic capabilities, physiological properties, and environmental adaptations of these organisms. Of note is the vast array of transporters encoded in G. sulphuraria capable of importing a variety of carbon sources, particularly sugars and amino acids, while C. merolae and C. crispus have relatively few such proteins. Chondrus crispus may prefer short chain acids to sugars and amino acids. In addition, the number of encoded proteins pertaining to heavy metal ion transport is highest in G. sulphuraria and lowest in C. crispus. All three organisms preferentially utilize secondary carriers over primary active transporters, suggesting that their primary source of energy derives from electron flow rather than substrate-level phosphorylation. Surprisingly, the percentage of inorganic ion transporters encoded in C. merolae more closely resembles that of C. crispus than G. sulphuraria, but only C. crispus appears to signal via voltage-gated cation channels and possess a Na+ /K+ -ATPase and a Na+ exporting pyrophosphatase. The results presented in this report further our understanding of the metabolic potential and toxic compound resistances of these three organisms.


Assuntos
Proteínas de Algas/genética , Proteínas de Transporte/genética , Genoma de Planta , Rodófitas/genética , Proteínas de Algas/metabolismo , Proteínas de Transporte/metabolismo , Chondrus/genética , Biologia Computacional
18.
J Struct Biol ; 196(3): 496-502, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27720943

RESUMO

We propose that the alternative crystal forms of outward open UlaA (which are experimental, not simulated, and contain the substrate in the cavity) can be used to interpret/validate the MD results from MalT (the substrate capture step, which involves the mobile second TMSs of the V-motifs, TMSs 2 and 7). Since the crystal contacts are the same between the two alternative crystal forms of outward open UlaA, the striking biological differences noted, including rearranged hydrogen bonds and salt bridge coordination, are not attributable to crystal packing differences. Using transport assays, we identified G58 and G286 as essential for normal vitamin C transport, but the comparison of alternative crystal forms revealed that these residues to unhinge TMS movements from substrate-binding side chains, rendering the mid-TMS regions of homologous TMSs 2 and 7 relatively immobile. While the TMS that is involved in substrate binding in MalT is part of the homologous bundle that holds the two separate halves of the transport assembly (two proteins) together, an unequal effect of the two knockouts was observed for UlaA where both V-motifs are free from such dimer interface interactions.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Conformação Proteica , Ácido Ascórbico/química , Cristalografia por Raios X , Dimerização , Proteínas de Escherichia coli/ultraestrutura , Ligação de Hidrogênio , Proteínas de Membrana Transportadoras/ultraestrutura , Especificidade por Substrato
19.
Microb Pathog ; 98: 118-31, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27296707

RESUMO

Select species of the bacterial genus Leptospira are causative agents of leptospirosis, an emerging global zoonosis affecting nearly one million people worldwide annually. We examined two Leptospira pathogens, Leptospira interrogans serovar Lai str. 56601 and Leptospira borgpetersenii serovar Hardjo-bovis str. L550, as well as the free-living leptospiral saprophyte, Leptospira biflexa serovar Patoc str. 'Patoc 1 (Ames)'. The transport proteins of these leptospires were identified and compared using bioinformatics to gain an appreciation for which proteins may be related to pathogenesis and saprophytism. L. biflexa possesses a disproportionately high number of secondary carriers for metabolite uptake and environmental adaptability as well as an increased number of inorganic cation transporters providing ionic homeostasis and effective osmoregulation in a rapidly changing environment. L. interrogans and L. borgpetersenii possess far fewer transporters, but those that they all have are remarkably similar, with near-equivalent representation in most transporter families. These two Leptospira pathogens also possess intact sphingomyelinases, holins, and virulence-related outer membrane porins. These virulence-related factors, in conjunction with decreased transporter substrate versatility, indicate that pathogenicity arose in Leptospira correlating to progressively narrowing ecological niches and the emergence of a limited set of proteins responsible for host invasion. The variability of host tropism and mortality rates by infectious leptospires suggests that small differences in individual sets of proteins play important physiological and pathological roles.


Assuntos
Biologia Computacional , Variação Genética , Genoma Bacteriano , Leptospira/genética , Proteínas de Membrana Transportadoras/genética , Fatores de Virulência/genética , Humanos , Leptospira/classificação , Leptospira/patogenicidade , Proteínas de Membrana Transportadoras/análise , Fatores de Virulência/análise
20.
Nucleic Acids Res ; 42(Database issue): D251-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24225317

RESUMO

The Transporter Classification Database (TCDB; http://www.tcdb.org) serves as a common reference point for transport protein research. The database contains more than 10,000 non-redundant proteins that represent all currently recognized families of transmembrane molecular transport systems. Proteins in TCDB are organized in a five level hierarchical system, where the first two levels are the class and subclass, the second two are the family and subfamily, and the last one is the transport system. Superfamilies that contain multiple families are included as hyperlinks to the five tier TC hierarchy. TCDB includes proteins from all types of living organisms and is the only transporter classification system that is both universal and recognized by the International Union of Biochemistry and Molecular Biology. It has been expanded by manual curation, contains extensive text descriptions providing structural, functional, mechanistic and evolutionary information, is supported by unique software and is interconnected to many other relevant databases. TCDB is of increasing usefulness to the international scientific community and can serve as a model for the expansion of database technologies. This manuscript describes an update of the database descriptions previously featured in NAR database issues.


Assuntos
Bases de Dados de Proteínas , Proteínas de Membrana Transportadoras/classificação , Internet , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/fisiologia , Homologia de Sequência de Aminoácidos , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa