Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 38(44): 9402-9413, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381432

RESUMO

Motor and premotor cortices are crucial for the control of movements. However, we still know little about how these areas contribute to higher-order motor control, such as deciding which movements to make and when to make them. Here we focus on rodent studies and review recent findings, which suggest that-in addition to motor control-neurons in motor cortices play a role in sensory integration, behavioral strategizing, working memory, and decision-making. We suggest that these seemingly disparate functions may subserve an evolutionarily conserved role in sensorimotor cognition and that further study of rodent motor cortices could make a major contribution to our understanding of the evolution and function of the mammalian frontal cortex.


Assuntos
Córtex Motor/fisiologia , Movimento/fisiologia , Córtex Pré-Frontal/fisiologia , Tato/fisiologia , Animais , Humanos , Vibrissas/inervação , Vibrissas/fisiologia
2.
Cereb Cortex ; 28(3): 1024-1038, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137723

RESUMO

In motor cortex, 2 types of deep layer pyramidal cells send their axons to other areas: intratelencephalic (IT)-type neurons specifically project bilaterally to the cerebral cortex and striatum, whereas neurons of the extratelencephalic (ET)-type, termed conventionally pyramidal tract-type, project ipsilaterally to the thalamus and other areas. Although they have totally different synaptic and membrane potential properties in vitro, little is known about the differences between them in ongoing spiking dynamics in vivo. We identified IT-type and ET-type neurons, as well as fast-spiking-type interneurons, using novel multineuronal analysis based on optogenetically evoked spike collision along their axons in behaving/resting rats expressing channelrhodopsin-2 (Multi-Linc method). We found "postspike suppression" (~100 ms) as a characteristic of ET-type neurons in spike auto-correlograms, and it remained constant independent of behavioral conditions in functionally different ET-type neurons. Postspike suppression followed even solitary spikes, and spike bursts significantly extended its duration. We also observed relatively strong spike synchrony in pairs containing IT-type neurons. Thus, spiking dynamics in IT-type and ET-type neurons may be optimized differently for precise and coordinated motor control.


Assuntos
Potenciais de Ação/fisiologia , Córtex Motor/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Dinâmica não Linear , Telencéfalo/citologia , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Optogenética , Ratos , Ratos Transgênicos , Estatísticas não Paramétricas
3.
J Neurosci ; 37(45): 10904-10916, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28972128

RESUMO

Two distinct motor areas, the primary and secondary motor cortices (M1 and M2), play crucial roles in voluntary movement in rodents. The aim of this study was to characterize the laterality in motor cortical representations of right and left forelimb movements. To achieve this goal, we developed a novel behavioral task, the Right-Left Pedal task, in which a head-restrained male rat manipulates a right or left pedal with the corresponding forelimb. This task enabled us to monitor independent movements of both forelimbs with high spatiotemporal resolution. We observed phasic movement-related neuronal activity (Go-type) and tonic hold-related activity (Hold-type) in isolated unilateral movements. In both M1 and M2, Go-type neurons exhibited bias toward contralateral preference, whereas Hold-type neurons exhibited no bias. The contralateral bias was weaker in M2 than M1. Moreover, we differentiated between intratelencephalic (IT) and pyramidal tract (PT) neurons using optogenetically evoked spike collision in rats expressing channelrhodopsin-2. Even in identified PT and IT neurons, Hold-type neurons exhibited no lateral bias. Go-type PT neurons exhibited bias toward contralateral preference, whereas IT neurons exhibited no bias. Our findings suggest a different laterality of movement representations of M1 and M2, in each of which IT neurons are involved in cooperation of bilateral movements, whereas PT neurons control contralateral movements.SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2) are involved in voluntary movements via distinct projection neurons: intratelencephalic (IT) neurons and pyramidal tract (PT) neurons. However, it remains unclear whether the two motor cortices (M1 vs M2) and the two classes of projection neurons (IT vs PT) have different laterality of movement representations. We optogenetically identified these neurons and analyzed their functional activity using a novel behavioral task to monitor movements of the right and left forelimbs separately. We found that contralateral bias was reduced in M2 relative to M1, and in IT relative to PT neurons. Our findings suggest that the motor information processing that controls forelimb movement is coordinated by a distinct cell population.


Assuntos
Membro Anterior/inervação , Membro Anterior/fisiologia , Lateralidade Funcional/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Tratos Piramidais/fisiologia , Telencéfalo/fisiologia , Animais , Comportamento Animal/fisiologia , Condicionamento Operante , Eletromiografia , Masculino , Córtex Motor/citologia , Optogenética , Tratos Piramidais/citologia , Ratos , Rodopsina/biossíntese , Rodopsina/fisiologia , Telencéfalo/citologia
4.
J Neurosci ; 36(21): 5736-47, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225764

RESUMO

UNLABELLED: The architectonic subdivisions of the brain are believed to be functional modules, each processing parts of global functions. Previously, we showed that neurons in different regions operate in different firing regimes in monkeys. It is possible that firing regimes reflect differences in underlying information processing, and consequently the firing regimes in homologous regions across animal species might be similar. We analyzed neuronal spike trains recorded from behaving mice, rats, cats, and monkeys. The firing regularity differed systematically, with differences across regions in one species being greater than the differences in similar areas across species. Neuronal firing was consistently most regular in motor areas, nearly random in visual and prefrontal/medial prefrontal cortical areas, and bursting in the hippocampus in all animals examined. This suggests that firing regularity (or irregularity) plays a key role in neural computation in each functional subdivision, depending on the types of information being carried. SIGNIFICANCE STATEMENT: By analyzing neuronal spike trains recorded from mice, rats, cats, and monkeys, we found that different brain regions have intrinsically different firing regimes that are more similar in homologous areas across species than across areas in one species. Because different regions in the brain are specialized for different functions, the present finding suggests that the different activity regimes of neurons are important for supporting different functions, so that appropriate neuronal codes can be used for different modalities.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Gatos , Simulação por Computador , Feminino , Haplorrinos , Masculino , Camundongos , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Especificidade da Espécie
5.
J Physiol ; 595(1): 385-413, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27488936

RESUMO

KEY POINTS: There have been few systematic population-wide analyses of relationships between spike synchrony within a period of several milliseconds and behavioural functions. In this study, we obtained a large amount of spike data from > 23,000 neuron pairs by multiple single-unit recording from deep layer neurons in motor cortical areas in rats performing a forelimb movement task. The temporal changes of spike synchrony in the whole neuron pairs were statistically independent of behavioural changes during the task performance, although some neuron pairs exhibited correlated changes in spike synchrony. Mutual information analyses revealed that spike synchrony made a smaller contribution than spike rate to behavioural functions. The strength of spike synchrony between two neurons was statistically independent of the spike rate-based preferences of the pair for behavioural functions. ABSTRACT: Spike synchrony within a period of several milliseconds in presynaptic neurons enables effective integration of functional information in the postsynaptic neuron. However, few studies have systematically analysed the population-wide relationships between spike synchrony and behavioural functions. Here we obtained a sufficiently large amount of spike data among regular-spiking (putatively excitatory) and fast-spiking (putatively inhibitory) neuron subtypes (> 23,000 pairs) by multiple single-unit recording from deep layers in motor cortical areas (caudal forelimb area, rostral forelimb area) in rats performing a forelimb movement task. After holding a lever, rats pulled the lever either in response to a cue tone (external-trigger trials) or spontaneously without any cue (internal-trigger trials). Many neurons exhibited functional spike activity in association with forelimb movements, and the preference of regular-spiking neurons in the rostral forelimb area was more biased toward externally triggered movement than that in the caudal forelimb area. We found that a population of neuron pairs with spike synchrony does exist, and that some neuron pairs exhibit a dependence on movement phase during task performance. However, the population-wide analysis revealed that spike synchrony was statistically independent of the movement phase and the spike rate-based preferences of the pair for behavioural functions, whereas spike rates were clearly dependent on the movement phase. In fact, mutual information analyses revealed that the contribution of spike synchrony to the behavioural functions was small relative to the contribution of spike rate. Our large-scale analysis revealed that cortical spike rate, rather than spike synchrony, contributes to population coding for movement.


Assuntos
Comportamento Animal/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Potenciais de Ação/fisiologia , Animais , Condicionamento Operante/fisiologia , Sinais (Psicologia) , Membro Anterior/fisiologia , Masculino , Neurônios/fisiologia , Ratos Long-Evans
6.
Artigo em Japonês | MEDLINE | ID: mdl-37225455

RESUMO

The aim of this study was to investigate the relationships of dietary intake, exercise, and menstrual regularity with bone density. In 81 female university students, the osteo-sono-assessment index (OSI) was determined by quantitative ultrasonography. In addition, a questionnaire on the intake of calcium, vitamin D, and phosphorus, exercise experiences in junior high school and high school days, and menstrual regularity was administered. The OSI was higher in the group that had the habit of exercising in junior high school and high school. Furthermore, the higher OSI was associated with higher vitamin D intake and lower phosphorus intake. These findings suggest the importance of exercise and dietary intake for improving bone density.


Assuntos
Densidade Óssea , Exercício Físico , Humanos , Feminino , Adulto Jovem , Estado Nutricional , Vitamina D , Ingestão de Alimentos
7.
J Neurophysiol ; 108(6): 1781-92, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22745461

RESUMO

Stereotaxic head fixation plays a necessary role in current physiological techniques, such as in vivo whole cell recording and two-photon laser-scanning microscopy, that are designed to elucidate the cortical involvement in animal behaviors. In rodents, however, head fixation often inhibits learning and performance of behavioral tasks. In particular, it has been considered inappropriate for head-fixed rodents to be operantly conditioned to perform skilled movements with their forelimb (e.g., lever-press task), despite the potential applicability of the task. Here we have solved this problem conceptually by integrating a lever (operandum) and a rewarding spout (reinforcer) into one ″spout-lever″ device for efficient operant learning. With this device, head-fixed rats reliably learned to perform a pull manipulation of the spout-lever with their right forelimb in response to an auditory cue signal (external-trigger trial, namely, Go trial) within several days. We also demonstrated stable whole cell recordings from motor cortex neurons while the rats were performing forelimb movements in external-trigger trials. We observed a behavior-related increase in the number of action potentials in membrane potential. In the next session, the rats, which had already learned the external-trigger trial, effortlessly performed similar spout-lever manipulation with no cue presentation (internal-trigger trial) additionally. Likewise, some of the rats learned to keep holding the spout-lever in response to another cue signal (No-go trial) in the following session, so that they mastered the Go/No-go discrimination task in one extra day. Our results verified the usefulness of spout-lever manipulation for behavioral experiments employing cutting-edge physiological techniques.


Assuntos
Condicionamento Operante , Membro Anterior/fisiologia , Cabeça/fisiologia , Movimento/fisiologia , Reforço Psicológico , Restrição Física/instrumentação , Animais , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Long-Evans
8.
Neuroscience ; 388: 297-316, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30077617

RESUMO

Animals can suppress their behavioral response in advance according to changes in environmental context (proactive inhibition: delaying the start of response), a process in which several cortical areas may participate. However, it remains unclear how this process is adaptively regulated according to contextual changes on different timescales. To address the issue, we used an improved stop-signal task paradigm to behaviorally and electrophysiologically characterize the temporal aspect of proactive inhibition in head-fixed rats. In the task, they must respond to a go cue as quickly as possible (go trial), but did not have to respond if a stop cue followed the go cue (stop trial). The task alternated between a block of only go trials (G-block) and a block of go-and-stop trials (GS-block). We observed block-based and trial-based proactive inhibition (emerging in GS-block and after stop trial, respectively) by behaviorally evaluating the delay in reaction time in correct go trials depending on contextual changes on different timescales. We electrophysiologically analyzed task-related neuronal activity in the primary and secondary motor, posterior parietal, and orbitofrontal cortices (M1, M2, PPC, and OFC, respectively). Under block-based proactive inhibition, spike activity of cue-preferring OFC neurons was attenuated continuously, while M1 and M2 activity was enhanced during motor preparation. Subsequently, M1 activity was attenuated during motor decision/execution. Under trial-based proactive inhibition, the OFC activity was continuously enhanced, and PPC and M1 activity was also enhanced shortly during motor decision/execution. These results suggest that different cortical mechanisms underlie the two types of proactive inhibition in rodents.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Inibição Proativa , Potenciais de Ação , Animais , Mapeamento Encefálico , Microeletrodos , Atividade Motora/fisiologia , Ratos Long-Evans
9.
PLoS One ; 9(6): e98662, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24893154

RESUMO

Rodents have primary and secondary motor cortices that are involved in the execution of voluntary movements via their direct and parallel projections to the spinal cord. However, it is unclear whether the rodent secondary motor cortex has any motor function distinct from the primary motor cortex to properly control voluntary movements. In the present study, we quantitatively examined neuronal activity in the caudal forelimb area (CFA) of the primary motor cortex and rostral forelimb area (RFA) of the secondary motor cortex in head-fixed rats performing forelimb movements (pushing, holding, and pulling a lever). We found virtually no major differences between CFA and RFA neurons, regardless of neuron subtypes, not only in their basal spiking properties but also in the time-course, amplitude, and direction preference of their functional activation for simple forelimb movements. However, the RFA neurons, as compared with the CFA neurons, showed obviously a greater susceptibility of their functional activation to an alteration in a behavioral situation, a 'rewarding' response that leads to reward or a 'consummatory' response that follows reward water, which might be accompanied by some internal adaptations without affecting the motor outputs. Our results suggest that, although the CFA and RFA neurons commonly process fundamental motor information to properly control forelimb movements, the RFA neurons may be functionally differentiated to integrate motor information with internal state information for an adaptation to goal-directed behaviors.


Assuntos
Córtex Motor/fisiologia , Animais , Eletrofisiologia , Membro Anterior/fisiologia , Masculino , Neurônios/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa