Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stud Health Technol Inform ; 132: 348-50, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18391319

RESUMO

This paper outlines user interface and interaction issues, technical considerations, and problems encountered in transforming an educational VR simulation of a reified kidney nephron into an interactive artwork appropriate for a fine arts museum.


Assuntos
Arte , Simulação por Computador , Interface Usuário-Computador , Educação , Humanos , Néfrons , Estados Unidos
2.
Stud Health Technol Inform ; 119: 422-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16404091

RESUMO

While sonification has enjoyed much attention in VR simulation studies, music has generally been incorporated as ambiance. This is partially due to difficulties with manipulating it interactively in real-time while maintaining a sensible musicality. This paper discusses how algorithmically generated music is used to provide ambiance, characterize the visual representation of molecular particle flow, provide orientation cues to the user, and enhance recognition of chemical gradient balances in a reified model of the kidney nephron. The technical obstacles related to the use of music in this context are also addressed.


Assuntos
Algoritmos , Simulação por Computador , Música , Néfrons , Interface Usuário-Computador , Educação Médica , Humanos
3.
Stud Health Technol Inform ; 119: 13-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16404004

RESUMO

Several abstract concepts in medical education are difficult to teach and comprehend. In order to address this challenge, we have been applying the approach of reification of abstract concepts using interactive virtual environments and a knowledge-based design. Reification is the process of making abstract concepts and events, beyond the realm of direct human experience, concrete and accessible to teachers and learners. Entering virtual worlds and simulations not otherwise easily accessible provides an opportunity to create, study, and evaluate the emergence of knowledge and comprehension from the direct interaction of learners with otherwise complex abstract ideas and principles by bringing them to life. Using a knowledge-based design process and appropriate subject matter experts, knowledge structure methods are applied in order to prioritize, characterize important relationships, and create a concept map that can be integrated into the reified models that are subsequently developed. Applying these principles, our interdisciplinary team has been developing a reified model of the nephron into which important physiologic functions can be integrated and rendered into a three dimensional virtual environment called Flatland, a virtual environments development software tool, within which a learners can interact using off-the-shelf hardware. The nephron model can be driven dynamically by a rules-based artificial intelligence engine, applying the rules and concepts developed in conjunction with the subject matter experts. In the future, the nephron model can be used to interactively demonstrate a number of physiologic principles or a variety of pathological processes that may be difficult to teach and understand. In addition, this approach to reification can be applied to a host of other physiologic and pathological concepts in other systems. These methods will require further evaluation to determine their impact and role in learning.


Assuntos
Compreensão , Rim/anatomia & histologia , Modelos Anatômicos , Interface Usuário-Computador , Educação Médica/métodos , Humanos , Estados Unidos
4.
Artigo em Inglês | MEDLINE | ID: mdl-15544229

RESUMO

Medical knowledge and skills essential for tomorrow's healthcare professionals continue to change faster than ever before creating new demands in medical education. Project TOUCH (Telehealth Outreach for Unified Community Health) has been developing methods to enhance learning by coupling innovations in medical education with advanced technology in high performance computing and next generation Internet2 embedded in virtual reality environments (VRE), artificial intelligence and experiential active learning. Simulations have been used in education and training to allow learners to make mistakes safely in lieu of real-life situations, learn from those mistakes and ultimately improve performance by subsequent avoidance of those mistakes. Distributed virtual interactive environments are used over distance to enable learning and participation in dynamic, problem-based, clinical, artificial intelligence rules-based, virtual simulations. The virtual reality patient is programmed to dynamically change over time and respond to the manipulations by the learner. Participants are fully immersed within the VRE platform using a head-mounted display and tracker system. Navigation, locomotion and handling of objects are accomplished using a joy-wand. Distribution is managed via the Internet2 Access Grid using point-to-point or multi-casting connectivity through which the participants can interact. Medical students in Hawaii and New Mexico (NM) participated collaboratively in problem solving and managing of a simulated patient with a closed head injury in VRE; dividing tasks, handing off objects, and functioning as a team. Students stated that opportunities to make mistakes and repeat actions in the VRE were extremely helpful in learning specific principles. VRE created higher performance expectations and some anxiety among VRE users. VRE orientation was adequate but students needed time to adapt and practice in order to improve efficiency. This was also demonstrated successfully between Western Australia and UNM. We successfully demonstrated the ability to fully immerse participants in a distributed virtual environment independent of distance for collaborative team interaction in medical simulation designed for education and training. The ability to make mistakes in a safe environment is well received by students and has a positive impact on their understanding, as well as memory of the principles involved in correcting those mistakes. Bringing people together as virtual teams for interactive experiential learning and collaborative training, independent of distance, provides a platform for distributed "just-in-time" training, performance assessment and credentialing. Further validation is necessary to determine the potential value of the distributed VRE in knowledge transfer, improved future performance and should entail training participants to competence in using these tools.


Assuntos
Educação Médica/métodos , Internet , Aprendizagem Baseada em Problemas , Interface Usuário-Computador , Simulação por Computador , Humanos
5.
Simul Healthc ; 3(1): 10-5, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19088637

RESUMO

INTRODUCTION: This article presents the results of a demonstration project that was designed with the goal to determine the feasibility and acceptability of medical students in using distance technology and virtual reality (VR) simulation within a problem-based learning (PBL). METHODS: This pilot project involved students from the Universities of New Mexico and Hawaii and compared (1) control groups consisting of medical students in a tutor-guided PBL session using a text-based case, (2) distance groups using the same text-based case but interacting over distance from multiple sites, (3) groups using a VR simulation scenario integrated into the case without interaction over distance, and (4) combination groups interacting over distance from multiple sites with integration of a VR simulation scenario. RESULTS: The study results suggest that it is possible to successfully conduct a PBL tutorial with medical students from two institutions with the integration VR and distributed distance interaction in combination or independently. The addition of these modalities did not interfere with learning dynamics when compared with traditional tutorial sessions. CONCLUSIONS: These findings suggest the feasibility and acceptability by students in the use of VR simulation integrated into a PBL learning session, as well as multipoint distance technologies that allowed interaction between students and tutors in different locations. The authors believe that these modalities can be applied where students and tutors from different institutions are in separate locations and can be used to support interactive experiential learning in a distributed network or on site and suggest areas for additional research.


Assuntos
Instrução por Computador/métodos , Educação a Distância/métodos , Educação Médica/métodos , Aprendizagem Baseada em Problemas/métodos , Interface Usuário-Computador , Simulação por Computador , Estudos de Viabilidade , Humanos , Projetos Piloto , Avaliação de Programas e Projetos de Saúde
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa