RESUMO
The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.
Assuntos
Encéfalo/metabolismo , Canal de Potássio Kv1.1/fisiologia , Canal de Potássio Kv1.2/fisiologia , Inibição Neural/fisiologia , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting/métodos , Encéfalo/citologia , Química Encefálica , Membrana Celular/metabolismo , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Humanos , Imuno-Histoquímica/métodos , Peptídeos e Proteínas de Sinalização Intracelular , Espectrometria de Massas/métodos , Potenciais da Membrana/fisiologia , Mutagênese/fisiologia , Mutação , Oócitos , Técnicas de Patch-Clamp/métodos , Conformação Proteica , Ratos , Alinhamento de Sequência , Coloração pela Prata/métodos , Transfecção/métodos , XenopusRESUMO
Interleukin-6 (IL-6) is a key mediator of inflammation. Inhibitors of IL-6 or of its signal transducing receptor gp130 constitute a novel class of anti-inflammatory drugs, which raise great hopes for improved treatments of painful inflammatory diseases such as rheumatoid arthritis. IL-6 and gp130 may enhance pain not only indirectly through their proinflammatory actions but also through a direct action on nociceptors (i.e., on neurons activated by painful stimuli). We found indeed that the IL-6/gp130 ligand-receptor complex induced heat hypersensitivity both in vitro and in vivo. This process was mediated by activation of PKC-delta via Gab1/2/PI(3)K and subsequent regulation of TRPV1, a member of the transient receptor potential (TRP) family of ion channels. To assess the relevance of this direct pain promoting effect of IL-6, we generated conditional knock-out mice, which lack gp130 specifically in nociceptors, and tested them in models of inflammatory and tumor-induced pain. These mice showed significantly reduced levels of inflammatory and tumor-induced pain but no changes in immune reactions or tumor growth. Our results uncover the significance of gp130 expressed in peripheral pain sensing neurons in the pathophysiology of major clinical pain disorders and suggest their use as novel pain relieving agents in inflammatory and tumor pain.
Assuntos
Receptor gp130 de Citocina/metabolismo , Dor/metabolismo , Nervos Periféricos/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Carcinoma/complicações , Carcinoma/metabolismo , Células Cultivadas , Receptor gp130 de Citocina/genética , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Temperatura Alta , Técnicas In Vitro , Interleucina-6/metabolismo , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Nociceptores/metabolismo , Dor/etiologia , Limiar da Dor , Nervos Periféricos/citologia , Nervos Periféricos/ultraestrutura , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/ultraestrutura , Transdução de Sinais , Medula Espinal/metabolismoRESUMO
To provide a tool to investigate the mechanisms inducing and maintaining cancer-related pain and hyperalgesia, a soft tissue tumor/metastasis model was developed that is applicable in C57BL/6J wild-type and transgenic mice. We show that the experimental tumor-induced heat hyperalgesia and nociceptor sensitization were prevented by systemic treatment with the tumor necrosis factor alpha (TNFalpha) antagonist etanercept. In naive mice, exogenous TNFalpha evoked heat hyperalgesia in vivo and sensitized nociceptive nerve fibers to heat in vitro. TNFalpha enhanced the expression of the nociceptor-specific heat transducer ion channel transient receptor potential vanilloid 1 (TRPV1) and increased the amplitudes of capsaicin and heat-activated ionic currents via p38/MAP (mitogen-activated protein) kinase and PKC (protein kinase C). Deletion of the tumor necrosis factor receptor type 2 (TNFR2) gene attenuated heat hyperalgesia and prevented TRPV1 upregulation in tumor-bearing mice, whereas TNFR1 gene deletion played a minor role. We propose endogenous TNFalpha as a key player in cancer-related heat hyperalgesia and nociceptor sensitization that generates TRPV1 upregulation and sensitization via TNFR2.
Assuntos
Carcinoma/complicações , Carcinoma/metabolismo , Hiperalgesia/etiologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Capsaicina/farmacologia , Células Cultivadas , Etanercepte , Deleção de Genes , Membro Posterior , Temperatura Alta , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Imunoglobulina G/farmacologia , Camundongos , Transplante de Neoplasias , Neurônios Aferentes/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Nociceptores/fisiopatologia , Técnicas de Patch-Clamp , Receptores do Fator de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral/genética , Canais de Cátion TRPV/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia , Regulação para CimaRESUMO
Cerebellar ataxia, a devastating neurological disease, may be initiated by hyperexcitability of deep cerebellar nuclei (DCN) secondary to loss of inhibitory input from Purkinje neurons that frequently degenerate in this disease. This mechanism predicts that intrinsic DCN hyperexcitability would cause ataxia in the absence of upstream Purkinje degeneration. We report the generation of a transgenic (Tg) model that supports this mechanism of disease initiation. Small-conductance calcium-activated potassium (SK) channels, regulators of firing frequency, were silenced in the CNS of Tg mice with the dominant-inhibitory construct SK3-1B-GFP. Transgene expression was restricted to the DCN within the cerebellum and was detectable beginning on postnatal day 10, concomitant with the onset of cerebellar ataxia. Neurodegeneration was not evident up to the sixth month of age. Recordings from Tg DCN neurons revealed loss of the apamin-sensitive after-hyperpolarization current (IAHP) and increased spontaneous firing through SK channel suppression, indicative of DCN hyperexcitability. Spike duration and other electrogenic conductance were unaffected. Thus, a purely electrical alteration is sufficient to cause cerebellar ataxia, and SK openers such as the neuroprotective agent riluzole may reduce neuronal hyperexcitability and have therapeutic value. This dominant-inhibitory strategy may help define the in vivo role of SK channels in other neuronal pathways.
Assuntos
Ataxia Cerebelar/fisiopatologia , Núcleos Cerebelares/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Animais , Apamina/metabolismo , Ataxia Cerebelar/patologia , Núcleos Cerebelares/citologia , Núcleos Cerebelares/patologia , Eletrofisiologia , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Atividade Motora , Canais de Potássio/genética , Canais de Potássio/metabolismo , Regiões Promotoras Genéticas , Células de Purkinje/citologia , Células de Purkinje/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , TransgenesRESUMO
Calcium-activated potassium (BK) channels play a central role in regulating multiple physiological processes, from the control of blood flow to neuronal excitability. Coordinated regulation of BK channel activity by changes in actin cytoskeleton dynamics has been implicated in several of these processes and related disease states such as epilepsy and stroke. However, how BK channels interact with the actin cytoskeleton is essentially unknown. Here we demonstrate noncanonical Src homology domain 3 (SH3) binding site motifs in the intracellular C terminus of the BK channel pore-forming alpha-subunit that are conserved from fish to humans. These noncanonical motifs target multiple SH3 domain cellular signaling proteins to BK channels, including the SH3 adapter protein cortactin (EMS1). We demonstrate that cortactin provides a molecular bridge between BK channels and the cortical actin cytoskeleton in cells. Disruption of the SH3-mediated interaction prevents the regulation of BK channel activity controlled by changes in actin cytoskeletal dynamics. Targeting of cortactin to BK channels via a novel, noncanonical SH3 domain binding motif has important implications for the coordination of BK channel function in normal physiology and disease.
Assuntos
Actinas/metabolismo , Cortactina/metabolismo , Citoesqueleto/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Domínios de Homologia de src/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Cortactina/química , Hipocampo/citologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Camundongos , Neurônios/metabolismo , Ligação ProteicaRESUMO
BACKGROUND: Abnormally elevated blood pressure is the most prevalent risk factor for cardiovascular disease. The large-conductance, voltage- and Ca2+-dependent K+ (BK) channel has been proposed as an important effector in the control of vascular tone by linking membrane depolarization and local increases in cytosolic Ca2+ to hyperpolarizing K+ outward currents. However, the BK channel may also affect blood pressure by regulating salt and fluid homeostasis, particularly by adjusting the renin-angiotensin-aldosterone system. METHODS AND RESULTS: Here we report that deletion of the pore-forming BK channel alpha subunit leads to a significant blood pressure elevation resulting from hyperaldosteronism accompanied by decreased serum K+ levels as well as increased vascular tone in small arteries. In smooth muscle from small arteries, deletion of the BK channel leads to a depolarized membrane potential, a complete lack of membrane hyperpolarizing spontaneous K+ outward currents, and an attenuated cGMP vasorelaxation associated with a reduced suppression of Ca2+ transients by cGMP. The high level of BK channel expression observed in wild-type adrenal glomerulosa cells, together with unaltered serum renin activities and corticotropin levels in mutant mice, suggests that the hyperaldosteronism results from abnormal adrenal cortical function in BK(-/-) mice. CONCLUSIONS: These results identify previously unknown roles of BK channels in blood pressure regulation and raise the possibility that BK channel dysfunction may underlie specific forms of hyperaldosteronism.
Assuntos
Hiperaldosteronismo/etiologia , Hipertensão/etiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Vasodilatação , Córtex Suprarrenal/fisiologia , Animais , Artérias/fisiologia , Pressão Sanguínea , Eletrofisiologia , Homeostase , Canais de Potássio Ativados por Cálcio de Condutância Alta/deficiência , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/fisiologia , Potássio/sangue , VasoconstriçãoRESUMO
Small-conductance Ca2+-activated K+ (SK) channels are important for excitability control and afterhyperpolarizations in vertebrate neurons and have been implicated in regulation of the functional state of the forebrain. We have examined the distribution, functional expression, and subunit composition of SK channels in rat brain. Immunoprecipitation detected solely homotetrameric SK2 and SK3 channels in native tissue and their constitutive association with calmodulin. Immunohistochemistry revealed a restricted distribution of SK1 and SK2 protein with highest densities in subregions of the hippocampus and neocortex. In contrast, SK3 protein was distributed more diffusely in these brain regions and predominantly expressed in phylogenetically older brain regions. Whole-cell recording showed a sharp segregation of apamin-sensitive SK current within the hippocampal formation, in agreement with the SK2 distribution, suggesting that SK2 homotetramers underlie the apamin-sensitive medium afterhyperpolarizations in rat hippocampus.
Assuntos
Encéfalo/metabolismo , Canais de Potássio Cálcio-Ativados , Canais de Potássio/metabolismo , Animais , Especificidade de Anticorpos , Apamina/farmacocinética , Ligação Competitiva/fisiologia , Encéfalo/citologia , Química Encefálica , Calmodulina/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Hipocampo/química , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Neocórtex/química , Neocórtex/citologia , Neocórtex/metabolismo , Oócitos/química , Oócitos/metabolismo , Especificidade de Órgãos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio/análise , Testes de Precipitina , Ratos , Ratos Sprague-Dawley , Canais de Potássio Ativados por Cálcio de Condutância Baixa , XenopusRESUMO
An antibody against the 442 carboxy-terminal amino acids of the BK channel alpha-subunit detects high immunoreactivity within the telencephalon in cerebral cortices, olfactory bulb, basal ganglia and hippocampus, while lower levels are found in basal forebrain regions and amygdala. Within the diencephalon, high density was found in nuclei of the ventral and dorsal thalamus and the medial habenular nucleus, and low density in the hypothalamus. The fasciculus retroflexus and its termination in the mesencephalic interpeduncular nucleus are prominently stained. Other mesencephalic expression sites are periaquaeductal gray and raphe nuclei. In the rhombencephalon, BK channels are enriched in the cerebellar cortex and in the locus coeruleus. Strong immunoreactivity is also contained in the vestibular nuclei, but not in cranial nerves and their intramedullary course of their roots. On the cellular level, BK channels show pre- and postsynaptic localizations, i.e., in somata, dendrites, axons and synaptic terminals.
Assuntos
Química Encefálica , Encéfalo/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/análise , Canais de Potássio Cálcio-Ativados/análise , Animais , Anticorpos/imunologia , Imuno-Histoquímica , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/imunologia , Camundongos , Camundongos Mutantes , Distribuição TecidualRESUMO
Neurons are highly specialized cells in which the integration and processing of electrical signals critically depends on the precise localization of ion channels. For large-conductance Ca(2+)- activated K(+) (BK) channels, targeting to presynaptic membranes in hippocampal pyramidal cells was reported; however, functional evidence also suggests a somatodendritic localization. Therefore we re-examined the subcellular distribution of BK channels in mouse hippocampus using a panel of independent antibodies in a combined approach of conventional immunocytochemistry on cultured neurons, pre- and postembedding electron microscopy and immunoprecipitation. In cultured murine hippocampal neurons, the colocalization of BK channels with both pre- and postsynaptic marker proteins was observed. Electron microscopy confirmed targeting of BK channels to axonal as well as dendritic membranes of glutamatergic synapses in hippocampus. A postsynaptic localization of BK channels was also supported by the finding that the channel coimmunoprecipitated with PSD95, a protein solely expressed in the postsynaptic compartment. These results thus demonstrate that BK channels reside in both post- and presynaptic compartments of hippocampal pyramidal neurons.
Assuntos
Dendritos/metabolismo , Hipocampo/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Terminações Pré-Sinápticas/metabolismo , Células Piramidais/metabolismo , Membranas Sinápticas/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Células Cultivadas , Dendritos/ultraestrutura , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases , Hipocampo/ultraestrutura , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Terminações Pré-Sinápticas/ultraestrutura , Subunidades Proteicas/metabolismo , Células Piramidais/ultraestrutura , Receptores de Glutamato/metabolismo , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/fisiologiaRESUMO
Large-conductance calcium- and voltage-activated potassium channels (BKCa) are dually activated by membrane depolarization and elevation of cytosolic calcium ions (Ca2+). Under normal cellular conditions, BKCa channel activation requires Ca2+ concentrations that typically occur in close proximity to Ca2+ sources. We show that BKCa channels affinity-purified from rat brain are assembled into macromolecular complexes with the voltage-gated calcium channels Cav1.2 (L-type), Cav2.1 (P/Q-type), and Cav2.2 (N-type). Heterologously expressed BKCa-Cav complexes reconstitute a functional "Ca2+ nanodomain" where Ca2+ influx through the Cav channel activates BKCa in the physiological voltage range with submillisecond kinetics. Complex formation with distinct Cav channels enables BKCa-mediated membrane hyperpolarization that controls neuronal firing pattern and release of hormones and transmitters in the central nervous system.
Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo N/metabolismo , Cálcio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potássio/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Química Encefálica , Células CHO , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/isolamento & purificação , Canais de Cálcio Tipo N/efeitos dos fármacos , Canais de Cálcio Tipo N/isolamento & purificação , Sinalização do Cálcio , Células Cromafins/efeitos dos fármacos , Células Cromafins/metabolismo , Cricetinae , Cricetulus , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/isolamento & purificação , Potenciais da Membrana/efeitos dos fármacos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Ratos , Transfecção , XenopusRESUMO
The SK2 subtype of small conductance Ca2+-activated K+ channels is widely distributed throughout the central nervous system and modulates neuronal excitability by contributing to the afterhyperpolarization that follows an action potential. Western blots of brain membrane proteins prepared from wild type and SK2-null mice reveal two isoforms of SK2, a 49-kDa band corresponding to the previously reported SK2 protein (SK2-S) and a novel 78-kDa form. Complementary DNA clones from brain and Western blots probed with an antibody specific for the longer form, SK2-L, identified the larger molecular weight isoform as an N-terminally extended SK2 protein. The N-terminal extension of SK2-L is cysteine-rich and mediates disulfide bond formation between SK2-L subunits or with heterologous proteins. Immunohistochemistry revealed that in brain SK2-L and SK2-S are expressed in similar but not identical patterns. Heterologous expression of SK2-L results in functional homomeric channels with Ca2+ sensitivity similar to that of SK2-S, consistent with their shared core and intracellular C-terminal domains. In contrast to the diffuse, uniform surface distribution of SK2-S, SK2-L channels cluster into sharply defined, distinct puncta suggesting that the extended cysteine-rich N-terminal domain mediates this process. Immunoprecipitations from transfected cells and mouse brain demonstrate that SK2-L co-assembles with the other SK subunits. Taken together, the results show that the SK2 gene encodes two subunit proteins and suggest that native SK2-L subunits may preferentially partition into heteromeric channel complexes with other SK subunits.
Assuntos
Encéfalo/metabolismo , Canais de Potássio Cálcio-Ativados/química , Canais de Potássio Cálcio-Ativados/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Células CHO , Células COS , Cálcio/metabolismo , Membrana Celular/metabolismo , Córtex Cerebral/metabolismo , Cricetinae , Cisteína/química , DNA Complementar/metabolismo , Dissulfetos , Relação Dose-Resposta a Droga , Eletrofisiologia , Hipocampo/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Isoformas de Proteínas , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Canais de Potássio Ativados por Cálcio de Condutância Baixa , TransfecçãoRESUMO
To investigate the distribution of all three SK channel subunits in the mouse central nervous system, we performed immunohistochemistry using sequence-specific antibodies directed against SK1, SK2, and SK3 proteins. Expression of SK1 and SK2 proteins revealed a partly overlapping distribution pattern restricted to a limited number of brain areas (e.g., neocortex, hippocampal formation). In contrast, SK3 immunoreactivity was rather complementary and predominantly detected in phylogenetically older brain regions like basal ganglia, thalamus, and various brain stem nuclei (e.g., locus coeruleus, tegmental nuclei). At the cellular level, SK1- and SK2-like immunoreactivity was primarily localized to somatic and dendritic structures, whereas the majority of SK3-like immunoreactivity was associated with varicose fibers.