Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Cell ; 185(21): 3992-4007.e16, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36198317

RESUMO

After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Anticorpos Antivirais , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35568035

RESUMO

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/virologia , Cricetinae , Células Epiteliais , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética
3.
Nature ; 602(7896): 300-306, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34823256

RESUMO

During the current coronavirus disease 2019 (COVID-19) pandemic, a variety of mutations have accumulated in the viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and, at the time of writing, four variants of concern are considered to be potentially hazardous to human society1. The recently emerged B.1.617.2/Delta variant of concern is closely associated with the COVID-19 surge that occurred in India in the spring of 2021 (ref. 2). However, the virological properties of B.1.617.2/Delta remain unclear. Here we show that the B.1.617.2/Delta variant is highly fusogenic and notably more pathogenic than prototypic SARS-CoV-2 in infected hamsters. The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates cleavage of the spike protein and enhances viral fusogenicity. Moreover, we demonstrate that the P681R-bearing virus exhibits higher pathogenicity compared with its parental virus. Our data suggest that the P681R mutation is a hallmark of the virological phenotype of the B.1.617.2/Delta variant and is associated with enhanced pathogenicity.


Assuntos
COVID-19/virologia , Fusão de Membrana , Mutação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Substituição de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , Cricetinae , Células Gigantes/metabolismo , Células Gigantes/virologia , Masculino , Mesocricetus , Filogenia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Virulência/genética , Replicação Viral
4.
Nature ; 603(7902): 706-714, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104837

RESUMO

The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fusão de Membrana , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Internalização do Vírus , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Convalescença , Feminino , Humanos , Soros Imunes/imunologia , Intestinos/patologia , Intestinos/virologia , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Mutação , Mucosa Nasal/patologia , Mucosa Nasal/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Técnicas de Cultura de Tecidos , Virulência , Replicação Viral
5.
J Virol ; 97(10): e0101123, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796123

RESUMO

IMPORTANCE: Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.


Assuntos
Genoma Viral , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Genoma Viral/genética
6.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612565

RESUMO

Orthohepadnavirus causes chronic hepatitis in a broad range of mammals, including primates, cats, woodchucks, and bats. Hepatitis B virus (HBV) X protein inhibits type-I interferon (IFN) signaling, thereby promoting HBV escape from the human innate immune system and establishing persistent infection. However, whether X proteins of Orthohepadnavirus viruses in other species display a similar inhibitory activity remains unknown. Here, we investigated the anti-IFN activity of 17 Orthohepadnavirus X proteins derived from various hosts. We observed conserved activity of Orthohepadnavirus X proteins in inhibiting TIR-domain-containing adaptor protein inducing IFN-ß (TRIF)-mediated IFN-ß signaling pathway through TRIF degradation. X proteins from domestic cat hepadnavirus (DCH), a novel member of Orthohepadnavirus, inhibited mitochondrial antiviral signaling protein (MAVS)-mediated IFNß signaling pathway comparable with HBV X. These results indicate that inhibition of IFN signaling is conserved in Orthohepadnavirus X proteins.


Assuntos
Quirópteros , Interferon Tipo I , Humanos , Animais , Gatos , Orthohepadnavirus , Transdução de Sinais , Proteínas Adaptadoras de Transporte Vesicular , Marmota
7.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36205476

RESUMO

Macaque-tropic HIV-1 (HIV-1mt) variants have been developed to establish preferable primate models that are advantageous in understanding HIV-1 infection pathogenesis and in assessing the preclinical efficacy of novel prevention/treatment strategies. We previously reported that a CXCR4-tropic HIV-1mt, MN4Rh-3, efficiently replicates in peripheral blood mononuclear cells (PBMCs) of cynomolgus macaques homozygous for TRIMCyp (CMsTC). However, the CMsTC challenged with MN4Rh-3 displayed low viral loads during the acute infection phase and subsequently exhibited short-term viremia. These virological phenotypes in vivo differed from those observed in most HIV-1-infected people. Therefore, further development of the HIV-1mt variant was needed. In this study, we first reconstructed the MN4Rh-3 clone to produce a CCR5-tropic HIV-1mt, AS38. In addition, serial in vivo passages allowed us to produce a highly adapted AS38-derived virus that exhibits high viral loads (up to approximately 106 copies ml-1) during the acute infection phase and prolonged periods of persistent viremia (lasting approximately 16 weeks postinfection) upon infection of CMsTC. Whole-genome sequencing of the viral genomes demonstrated that the emergence of a unique 15-nt deletion within the vif gene was associated with in vivo adaptation. The deletion resulted in a significant increase in Vpr protein expression but did not affect Vif-mediated antagonism of antiretroviral APOBEC3s, suggesting that Vpr is important for HIV-1mt adaptation to CMsTC. In summary, we developed a novel CCR5-tropic HIV-1mt that can induce high peak viral loads and long-term viremia and exhibits increased Vpr expression in CMsTC.


Assuntos
Produtos do Gene vpr , Infecções por HIV , Soropositividade para HIV , HIV-1 , Vírus da Imunodeficiência Símia , Animais , HIV-1/genética , Leucócitos Mononucleares , Macaca fascicularis , Vírus da Imunodeficiência Símia/genética , Viremia , Replicação Viral
8.
Biochem Biophys Res Commun ; 615: 56-62, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35605406

RESUMO

With the current worldwide pandemic of COVID-19, there is an urgent need to develop effective treatment and prevention methods against SARS-CoV-2 infection. We have previously reported that the proanthocyanidin (PAC) fraction in blueberry (BB) leaves has strong antiviral activity against hepatitis C virus (HCV) and human T-lymphocytic leukemia virus type 1 (HTLV-1). In this study, we used Kunisato 35 Gou (K35) derived from the rabbit eye blueberry (Vaccinium virgatum Aiton), which has a high PAC content in the leaves and stems. The mean of polymerization (mDP) of PAC in K35 was the highest of 7.88 in Fraction 8 (Fr8) from the stems and 12.28 of Fraction 7 (Fr7) in the leaves. The composition of BB-PAC in K35 is that most are B-type bonds with a small number of A-type bonds and cinchonain I as extension units. A strong antiviral effect was observed in Fr7, with a high polymerized PAC content in both the leaves and stems. Furthermore, when we examined the difference in the action of BB-PAC before and after SARS-CoV-2 infection, we found a stronger inhibitory effect in the pre-infection period. Moreover, BB-PAC Fr7 inhibited the activity of angiotensin II converting enzyme (ACE2), although no effect was observed in a neutralization test of pseudotyped SARS-CoV-2. The viral chymotrypsin-like cysteine protease (3CLpro) of SARS-CoV-2 was also inhibited by BB-PAC Fr7 in leaves and stems. These results indicate that BB-PAC has at least two different inhibitory effects, and that it is effective in suppressing SARS-CoV-2 infection regardless of the time of infection.


Assuntos
Mirtilos Azuis (Planta) , Tratamento Farmacológico da COVID-19 , Proantocianidinas , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/química , Antivirais/farmacologia , Mirtilos Azuis (Planta)/química , Folhas de Planta , Polimerização , Proantocianidinas/farmacologia , Coelhos , SARS-CoV-2
9.
J Virol ; 95(7)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33441342

RESUMO

Virus infection induces B cells with a wide variety of B cell receptor (BCR) repertoires. Patterns of induced BCR repertoires are different in individuals, while the underlying mechanism causing this difference remains largely unclear. In particular, the impact of germ line BCR immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent antibody induction associated with a germ line BCR Ig gene polymorphism. B404-class antibodies, which were previously reported as potent anti-simian immunodeficiency virus (SIV) neutralizing antibodies using the germ line VH3.33 gene-derived Ig heavy chain, were induced in five of 10 rhesus macaques after SIVsmH635FC infection. Investigation of VH3.33 genes in B404-class antibody inducers (n = 5) and non-inducers (n = 5) revealed association of B404-class antibody induction with a germ line VH3.33 polymorphism. Analysis of reconstructed antibodies indicated that the VH3.33 residue 38 is the determinant for B404-class antibody induction. B404-class antibodies were induced in all the macaques possessing the B404-associated VH3.33 allele, even under undetectable viremia. Our results show that a single nucleotide polymorphism in germ line VH genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line VH-gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.IMPORTANCE Vaccines against a wide variety of infectious diseases have been developed mostly to induce antibodies targeting pathogens. However, small but significant percentage of people fail to mount potent antibody responses after vaccination, while the underlying mechanism of host failure in antibody induction remains largely unclear. In particular, the impact of germ line B cell receptor (BCR)/antibody immunoglobulin (Ig) gene polymorphism on B cell/antibody induction has not fully been determined. In the present study, we found a potent anti-simian immunodeficiency virus neutralizing antibody induction associated with a germ line BCR/antibody Ig gene polymorphism in rhesus macaques. Our results demonstrate that a single nucleotide polymorphism in germ line Ig genes could be a determinant for induction of potent antibodies against virus infection, implying that germ line BCR/antibody Ig gene polymorphisms can be a factor restricting effective antibody induction or responsiveness to vaccination.

10.
J Med Virol ; 94(7): 3438-3441, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35246855

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) caused by Dabie bandavirus (SFTSV) is a serious public health concern in endemic areas, particularly in Asian and Southeast Asian countries. SFTSV is transmitted by direct contact with body fluids from infected humans and animals. Therefore, environmental hygiene in hospitals and veterinary clinics in SFTSV-endemic areas is highly important. This study assessed the effects of continuous and intermittent irradiation with deep-ultraviolet light-emitting diode (DUV-LED) on SFTSV. Evaluation was performed by conducting plaque assay in which SFTSV irradiated with deep-ultraviolet (DUV; 280 ± 5 nm) was inoculated onto Vero cells. The results showed that continuous and intermittent irradiation for 5 s, resulting in 18.75 mJ/cm2 of cumulative UV exposure, led to a >2.7 and >2.9 log reduction, respectively, corresponding to a >99.8% reduction in infectivity. These results demonstrate that DUV can be utilized for inactivation of SFTSV to maintain environmental hygiene in hospitals and veterinary clinics in endemic countries.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Vírus de RNA , Febre Grave com Síndrome de Trombocitopenia , Animais , Infecções por Bunyaviridae/epidemiologia , Chlorocebus aethiops , Humanos , Raios Ultravioleta , Células Vero
11.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430481

RESUMO

Zika virus (ZIKV) outbreaks in Central and South America caused severe public health problems in 2015 and 2016. These outbreaks were finally contained through several methods, including mosquito control using insecticides and repellents. Additionally, the development of herd immunity in these countries might have contributed to containing the epidemic. While ZIKV is mainly transmitted by mosquito bites and mucosal transmission via bodily fluids, including the semen of infected individuals, has also been reported. We evaluated the effect of mucosal ZIKV infection on continuous subcutaneous challenges in a cynomolgus monkey model. Repeated intravaginal inoculations of ZIKV did not induce detectable viremia or clinical symptoms, and all animals developed a potent neutralizing antibody, protecting animals from the subsequent subcutaneous superchallenge. These results suggest that viral replication at mucosal sites can induce protective immunity without causing systemic viremia or symptoms.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Infecção por Zika virus/epidemiologia , Macaca fascicularis , Viremia , Anticorpos Neutralizantes
12.
J Infect Dis ; 224(6): 989-994, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34260717

RESUMO

The SARS-CoV-2 B.1.617 variant emerged in the Indian state of Maharashtra in late 2020. There have been fears that 2 key mutations seen in the receptor-binding domain, L452R and E484Q, would have additive effects on evasion of neutralizing antibodies. We report that spike bearing L452R and E484Q confers modestly reduced sensitivity to BNT162b2 mRNA vaccine-elicited antibodies following either first or second dose. The effect is similar in magnitude to the loss of sensitivity conferred by L452R or E484Q alone. These data demonstrate reduced sensitivity to vaccine-elicited neutralizing antibodies by L452R and E484Q but lack of synergistic loss of sensitivity.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Evasão da Resposta Imune , Mutação , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacina BNT162 , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Células HEK293 , Humanos , Índia , Ligação Proteica , SARS-CoV-2/imunologia , Serina Endopeptidases , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
13.
Retrovirology ; 18(1): 32, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702294

RESUMO

The HIV-1 capsid, a conical shell encasing viral nucleoprotein complexes, is involved in multiple post-entry processes during viral replication. Many host factors can directly bind to the HIV-1 capsid protein (CA) and either promote or prevent HIV-1 infection. The viral capsid is currently being explored as a novel target for therapeutic interventions. In the past few decades, significant progress has been made in our understanding of the capsid-host interactions and mechanisms of action of capsid-targeting antivirals. At the same time, a large number of different viral capsids, which derive from many HIV-1 mutants, naturally occurring variants, or diverse lentiviruses, have been characterized for their interactions with capsid-binding molecules in great detail utilizing various experimental techniques. This review provides an overview of how sequence variation in CA influences phenotypic properties of HIV-1. We will focus on sequence differences that alter capsid-host interactions and give a brief account of drug resistant mutations in CA and their mutational effects on viral phenotypes. Increased knowledge of the sequence-function relationship of CA helps us deepen our understanding of the adaptive potential of the viral capsid.


Assuntos
Fármacos Anti-HIV/farmacologia , Capsídeo/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Replicação Viral/efeitos dos fármacos
14.
Biochem Biophys Res Commun ; 570: 21-25, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34271432

RESUMO

Natto, a traditional Japanese fermented soybean food, is well known to be nutritious and beneficial for health. In this study, we examined whether natto impairs infection by viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as bovine herpesvirus 1 (BHV-1). Interestingly, our results show that both SARS-CoV-2 and BHV-1 treated with a natto extract were fully inhibited infection to the cells. We also found that the glycoprotein D of BHV-1 was shown to be degraded by Western blot analysis and that a recombinant SARS-CoV-2 receptor-binding domain (RBD) was proteolytically degraded when incubated with the natto extract. In addition, RBD protein carrying a point mutation (UK variant N501Y) was also degraded by the natto extract. When the natto extract was heated at 100 °C for 10 min, the ability of both SARS-CoV-2 and BHV-1 to infect to the cells was restored. Consistent with the results of the heat inactivation, a serine protease inhibitor inhibited anti-BHV-1 activity caused by the natto extract. Thus, our findings provide the first evidence that the natto extract contains a protease(s) that inhibits viral infection through the proteolysis of the viral proteins.


Assuntos
Tratamento Farmacológico da COVID-19 , Glycine max/química , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Alimentos de Soja , Animais , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Bovinos , Células Cultivadas , Chlorocebus aethiops , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/efeitos dos fármacos , Herpesvirus Bovino 1/isolamento & purificação , Herpesvirus Bovino 1/patogenicidade , Humanos , Extratos Vegetais/química , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo
15.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30814280

RESUMO

The ability of human immunodeficiency virus type 1 (HIV-1) to transduce nondividing cells is key to infecting terminally differentiated macrophages, which can serve as a long-term reservoir of HIV-1 infection. The mutation N57A in the viral CA protein renders HIV-1 cell cycle dependent, allowing examination of HIV-1 infection of nondividing cells. Here, we show that the N57A mutation confers a postentry infectivity defect that significantly differs in magnitude between the common lab-adapted molecular clones HIV-1NL4-3 (>10-fold) and HIV-1LAI (2- to 5-fold) in multiple human cell lines and primary CD4+ T cells. Capsid permeabilization and reverse transcription are altered when N57A is incorporated into HIV-1NL4-3 but not HIV-1LAI The N57A infectivity defect is significantly exacerbated in both virus strains in the presence of cyclosporine (CsA), indicating that N57A infectivity is dependent upon CA interacting with host factor cyclophilin A (CypA). Adaptation of N57A HIV-1LAI selected for a second CA mutation, G94D, which rescued the N57A infectivity defect in HIV-1LAI but not HIV-1NL4-3 The rescue of N57A by G94D in HIV-1LAI is abrogated by CsA treatment in some cell types, demonstrating that this rescue is CypA dependent. An examination of over 40,000 HIV-1 CA sequences revealed that the four amino acids that differ between HIV-1NL4-3 and HIV-1LAI CA are polymorphic, and the residues at these positions in the two strains are widely prevalent in clinical isolates. Overall, a few polymorphic amino acid differences between two closely related HIV-1 molecular clones affect the phenotype of capsid mutants in different cell types.IMPORTANCE The specific mechanisms by which HIV-1 infects nondividing cells are unclear. A mutation in the HIV-1 capsid protein abolishes the ability of the virus to infect nondividing cells, serving as a tool to examine cell cycle dependence of HIV-1 infection. We have shown that two widely used HIV-1 molecular clones exhibit significantly different N57A infectivity phenotypes due to fewer than a handful of CA amino acid differences and that these clones are both represented in HIV-infected individuals. As such minor differences in closely related HIV-1 strains may impart significant infectivity differences, careful consideration should be given to drawing conclusions from one particular HIV-1 clone. This study highlights the potential for significant variation in results with the use of multiple strains and possible unanticipated effects of natural polymorphisms.


Assuntos
Linfócitos T CD4-Positivos , Capsídeo/metabolismo , Núcleo Celular , Infecções por HIV , HIV-1 , Mutação de Sentido Incorreto , Desenvelopamento do Vírus , Transporte Ativo do Núcleo Celular , Substituição de Aminoácidos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Núcleo Celular/virologia , Ciclosporina/farmacologia , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/genética , HIV-1/metabolismo , HIV-1/patogenicidade , Células HeLa , Humanos , Proteínas Virais/genética , Proteínas Virais/metabolismo
16.
J Virol ; 93(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31167922

RESUMO

The HIV-1 capsid executes essential functions that are regulated by capsid stability and host factors. In contrast to increasing knowledge on functional roles of capsid-interacting host proteins during postentry steps, less is known about capsid stability and its impact on intracellular events. Here, using the antiviral compound PF-3450074 (PF74) as a probe for capsid function, we uncovered a novel phenotype of capsid stability that has a profound effect on innate sensing of viral DNA by the DNA sensor cGAS. A single mutation, R143A, in the capsid protein conferred resistance to high concentrations of PF74, without affecting capsid binding to PF74. A cell-free assay showed that the R143A mutant partially counteracted the capsid-destabilizing activity of PF74, pointing to capsid stabilization as a resistance mechanism for the R143A mutant. In monocytic THP-1 cells, the R143A virus, but not the wild-type virus, suppressed cGAS-dependent innate immune activation. These results suggest that capsid stabilization improves the shielding of viral DNA from innate sensing. We found that a naturally occurring transmitted founder (T/F) variant shares the same properties as the R143A mutant with respect to PF74 resistance and DNA sensing. Imaging assays revealed delayed uncoating kinetics of this T/F variant and the R143A mutant. All these phenotypes of this T/F variant were controlled by a genetic polymorphism located at the trimeric interface between capsid hexamers, thus linking these capsid-dependent properties. Overall, this work functionally connects capsid stability to innate sensing of viral DNA and reveals naturally occurring phenotypic variation in HIV-1 capsid stability.IMPORTANCE The HIV-1 capsid, which is made from individual viral capsid proteins (CA), is a target for a number of antiviral compounds, including the small-molecule inhibitor PF74. In the present study, we utilized PF74 to identify a transmitted/founder (T/F) strain that shows increased capsid stability. Interestingly, PF74-resistant variants prevented cGAS-dependent innate immune activation under a condition where the other T/F strains induced type I interferon. These observations thus reveal a new CA-specific phenotype that couples capsid stability to viral DNA recognition by cytosolic DNA sensors.


Assuntos
Capsídeo/metabolismo , DNA Viral , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Nucleotidiltransferases/metabolismo , Sequência de Aminoácidos , Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Resistência à Doença , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Humanos , Indóis/farmacologia , Mutação , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Estabilidade Proteica
17.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511380

RESUMO

Type I interferons (IFNs), including alpha IFN (IFN-α) and IFN-ß, potently suppress HIV-1 replication by upregulating IFN-stimulated genes (ISGs). The viral capsid protein (CA) partly determines the sensitivity of HIV-1 to IFNs. However, it remains to be determined whether CA-related functions, including utilization of known host factors, reverse transcription, and uncoating, affect the sensitivity of HIV-1 to IFN-mediated restriction. Recently, we identified an HIV-1 CA variant that is unusually sensitive to IFNs. This variant, called the RGDA/Q112D virus, contains multiple mutations in CA: H87R, A88G, P90D, P93A, and Q112D. To investigate how an IFN-hypersensitive virus can evolve to overcome IFN-ß-mediated blocks targeting the viral capsid, we adapted the RGDA/Q112D virus in IFN-ß-treated cells. We successfully isolated IFN-ß-resistant viruses which contained either a single Q4R substitution or the double amino acid change G94D/G116R. These two IFN-ß resistance mutations variably changed the sensitivity of CA binding to human myxovirus resistance B (MxB), cleavage and polyadenylation specificity factor 6 (CPSF6), and cyclophilin A (CypA), indicating that the observed loss of sensitivity was not due to interactions with these known host CA-interacting factors. In contrast, the two mutations apparently functioned through distinct mechanisms. The Q4R mutation dramatically accelerated the kinetics of reverse transcription and initiation of uncoating of the RGDA/Q112D virus in the presence or absence of IFN-ß, whereas the G94D/G116R mutations affected reverse transcription only in the presence of IFN-ß, most consistent with a mechanism of the disruption of binding to an unknown IFN-ß-regulated host factor. These results suggest that HIV-1 can exploit multiple, known host factor-independent pathways to avoid IFN-ß-mediated restriction by altering capsid sequences and subsequent biological properties.IMPORTANCE HIV-1 infection causes robust innate immune activation in virus-infected patients. This immune activation is characterized by elevated levels of type I interferons (IFNs), which can block HIV-1 replication. Recent studies suggest that the viral capsid protein (CA) is a determinant for the sensitivity of HIV-1 to IFN-mediated restriction. Specifically, it was reported that the loss of CA interactions with CPSF6 or CypA leads to higher IFN sensitivity. However, the molecular mechanism of CA adaptation to IFN sensitivity is largely unknown. Here, we experimentally evolved an IFN-ß-hypersensitive CA mutant which showed decreased binding to CPSF6 and CypA in IFN-ß-treated cells. The CA mutations that emerged from this adaptation indeed conferred IFN-ß resistance. Our genetic assays suggest a limited contribution of known host factors to IFN-ß resistance. Strikingly, one of these mutations accelerated the kinetics of reverse transcription and uncoating. Our findings suggest that HIV-1 selected multiple, known host factor-independent pathways to avoid IFN-ß-mediated restriction.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/genética , Interferon beta/metabolismo , Interferon beta/farmacologia , Ciclofilina A , Células HEK293 , Infecções por HIV/virologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Mutação , Proteínas de Resistência a Myxovirus , Transcrição Reversa , Células THP-1 , Replicação Viral/efeitos dos fármacos , Fatores de Poliadenilação e Clivagem de mRNA
18.
PLoS Pathog ; 13(11): e1006722, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29186194

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) infects mainly CD4+CCR4+ effector/memory T cells in vivo. However, it remains unknown whether HTLV-1 preferentially infects these T cells or this virus converts infected precursor cells to specialized T cells. Expression of viral genes in vivo is critical to study viral replication and proliferation of infected cells. Therefore, we first analyzed viral gene expression in non-human primates naturally infected with simian T-cell leukemia virus type 1 (STLV-1), whose virological attributes closely resemble those of HTLV-1. Although the tax transcript was detected only in certain tissues, Tax expression was much higher in the bone marrow, indicating the possibility of de novo infection. Furthermore, Tax expression of non-T cells was suspected in bone marrow. These data suggest that HTLV-1 infects hematopoietic cells in the bone marrow. To explore the possibility that HTLV-1 infects hematopoietic stem cells (HSCs), we analyzed integration sites of HTLV-1 provirus in various lineages of hematopoietic cells in patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and a HTLV-1 carrier using the high-throughput sequencing method. Identical integration sites were detected in neutrophils, monocytes, B cells, CD8+ T cells and CD4+ T cells, indicating that HTLV-1 infects HSCs in vivo. We also detected Tax protein in myeloperoxidase positive neutrophils. Furthermore, dendritic cells differentiated from HTLV-1 infected monocytes caused de novo infection to T cells, indicating that infected monocytes are implicated in viral spreading in vivo. Certain integration sites were re-detected in neutrophils from HAM/TSP patients at different time points, indicating that infected HSCs persist and differentiate in vivo. This study demonstrates that HTLV-1 infects HSCs, and infected stem cells differentiate into diverse cell lineages. These data indicate that infection of HSCs can contribute to the persistence and spread of HTLV-1 in vivo.


Assuntos
Infecções por HTLV-I/virologia , Células-Tronco Hematopoéticas/virologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Animais , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/imunologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Macaca mulatta , Neutrófilos/virologia
19.
Virol J ; 16(1): 102, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31416485

RESUMO

BACKGROUND: Dengue virus (DENV) infection is one of the biggest challenges for human health in the world. In addition, a secondary DENV infection sometimes causes dengue hemorrhagic fever (DHF), which frequently leads to death. For this reason, accurate diagnosis record management is useful for prediction of DHF. Therefore, the demand for DENV rapid diagnosis tests (RDTs) is increasing because these tests are easy and rapid to use. However, commercially available RDTs often show low sensitivity for DENV and cross-reactivity against other flaviviruses, especially Zika virus (ZIKV). METHODS: We developed two types of novel DENV non-structural protein 1 (NS1) detection RDTs, designated TKK-1st and TKK-2nd kits. Specificities of the monoclonal antibodies (MAbs) used in these kits were confirmed by enzyme-linked immuno-sorbent assay (ELISA), dot blot, and western blot using recombinant NS1 proteins and synthetic peptides. For evaluation of sensitivity, specificity, and cross-reactivity of the novel DENV NS1 RDTs, we first used cultured DENV and other flaviviruses, ZIKV and Japanese encephalitis virus (JEV). We then used clinical specimens obtained in Bangladesh in 2017 for further evaluation of kit sensitivity and specificity in comparison with commercially available RDTs. In addition, RNA extracted from sera were used for viral genome sequencing and genotyping. RESULTS: Epitopes of three out of four MAbs used in the two novel RDTs were located in amino acid positions 100 to 122 in the NS1 protein, a region that shows low levels of homology with other flaviviruses. Our new kits showed high levels of sensitivity against various serotypes and genotypes of DENV and exhibited high levels of specificity without cross-reactivity against ZIKV and JEV. In clinical specimens, our RDTs showed sensitivities of 96.0% (145/151, TKK-1st kit) and 96.7% (146/151, TKK-2nd kit), and specificities of 98.0% (98/100, TKK-1st kit and TKK-2nd kit). On the other hand, in the case of the commercially available SD Bioline RDT, sensitivity was 83.4% (126/151) and specificity was 99.0% (99/100) against the same clinical specimens. CONCLUSIONS: Our novel DENV NS1-targeting RDTs demonstrated high levels of sensitivity and lacked cross-reactivity against ZIKV and JEV compared with commercially available RDTs.


Assuntos
Vírus da Dengue/isolamento & purificação , Dengue/diagnóstico , Kit de Reagentes para Diagnóstico/normas , Proteínas não Estruturais Virais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Bangladesh , Western Blotting , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Limite de Detecção , Proteínas Recombinantes/genética , Sensibilidade e Especificidade , Zika virus
20.
J Virol ; 90(12): 5808-5823, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27076642

RESUMO

UNLABELLED: The viral capsid of HIV-1 interacts with a number of host factors to orchestrate uncoating and regulate downstream events, such as reverse transcription, nuclear entry, and integration site targeting. PF-3450074 (PF74), an HIV-1 capsid-targeting low-molecular-weight antiviral compound, directly binds to the capsid (CA) protein at a site also utilized by host cell proteins CPSF6 and NUP153. Here, we found that the dose-response curve of PF74 is triphasic, consisting of a plateau and two inhibitory phases of different slope values, consistent with a bimodal mechanism of drug action. High PF74 concentrations yielded a steep curve with the highest slope value among different classes of known antiretrovirals, suggesting a dose-dependent, cooperative mechanism of action. CA interactions with both CPSF6 and cyclophilin A (CypA) were essential for the unique dose-response curve. A shift of the steep curve at lower drug concentrations upon blocking the CA-CypA interaction suggests a protective role for CypA against high concentrations of PF74. These findings, highlighting the unique characteristics of PF74, provide a model in which its multimodal mechanism of action of both noncooperative and cooperative inhibition by PF74 is regulated by interactions of cellular proteins with incoming viral capsids. IMPORTANCE: PF74, a novel capsid-targeting antiviral against HIV-1, shares its binding site in the viral capsid protein (CA) with the host factors CPSF6 and NUP153. This work reveals that the dose-response curve of PF74 consists of two distinct inhibitory phases that are differentially regulated by CA-interacting host proteins. PF74's potency depended on these CA-binding factors at low doses. In contrast, the antiviral activity of high PF74 concentrations was attenuated by cyclophilin A. These observations provide novel insights into both the mechanism of action of PF74 and the roles of host factors during the early steps of HIV-1 infection.


Assuntos
Fármacos Anti-HIV/farmacologia , Capsídeo/metabolismo , HIV-1/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Indóis/farmacologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fenilalanina/análogos & derivados , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Sítios de Ligação , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Ciclofilina A/metabolismo , Ciclofilina A/farmacologia , Células HEK293 , HIV-1/fisiologia , Células HeLa , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fenilalanina/farmacologia , Transcrição Reversa/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Fatores de Poliadenilação e Clivagem de mRNA/deficiência , Fatores de Poliadenilação e Clivagem de mRNA/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa