RESUMO
Recently, due to regulatory and ethical demands, new approach methodologies (NAMs), defined approaches (DAs), and read-across (RAx) have been used in the risk assessment of skin sensitization. Integrated testing strategy (ITS)v1 DA, adopted in OECD Guideline No. 497, can be used for skin sensitization potency categorization. However, ITSv1 DA alone is not used for further refinement of the potency prediction based on EC3 (the estimated concentration that produces a stimulation index of 3 in murine local lymph node assay) values. Moreover, there is no explicit approach to incorporating NAM/DA data into RAx to fill the data gap of EC3 values with high confidence. This study developed a strategy incorporating ITSv1 DA into RAx to predict skin sensitization potency: ITSv1-based RAx. To examine the reliability of this novel strategy, a case study with lilial, a fragrance material, was performed. Based on ITSv1-based RAx, the skin sensitization potency of lilial was determined by extrapolating the EC3 value of 9.5% for the suitable analogue bourgeonal, which was close to the historical EC3 value of 8.6%. The result suggested that the strategy can refine the prediction of EC3 values with high confidence and be useful for the risk assessment of skin sensitization.
Assuntos
Dermatite Alérgica de Contato , Animais , Humanos , Camundongos , Dermatite Alérgica de Contato/etiologia , Reprodutibilidade dos Testes , Pele , Ensaio Local de Linfonodo , Medição de Risco/métodos , Proteínas do Olho , Fatores de Transcrição , Proteínas de HomeodomínioRESUMO
To detect new and changing SARS-CoV-2 variants, we investigated candidate Delta-Omicron recombinant genomes from Centers for Disease Control and Prevention national genomic surveillance. Laboratory and bioinformatic investigations identified and validated 9 genetically related SARS-CoV-2 viruses with a hybrid Delta-Omicron spike protein.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Biologia Computacional , Humanos , SARS-CoV-2/genética , Estados Unidos/epidemiologiaRESUMO
Skin sensitization resulting in allergic contact dermatitis represents an important toxicological endpoint as part of safety assessments. When available substance-specific sensitization data are inadequate, the dermal sensitization threshold (DST) concept has been proposed to set a skin exposure threshold to provide no appreciable risk of skin sensitization. Structure-based DSTs, which include non-reactive, reactive, and high potency category (HPC) DSTs, can be applied to substances with an identified chemical structures. An in vitro data-based "mixture DST" can be applied to mixtures based on data from in vitro test methods, such as KeratinoSens™ and the human Cell Line Activation Test. The purpose of this review article is to discuss the practical use of DSTs for conducting sound sensitization risk assessments to assure the safety of consumer products. To this end, several improvements are discussed in this review. For application of structure-based DSTs, an overall structural classification workflow was developed to exclude the possibility that "HPC but non-reactive" chemicals are misclassified as "non-reactive", because such chemicals should be classified as HPC chemicals considering that HPC rules have been based on the chemical structure of high potency sensitizers. Besides that, an extended application of the mixture DST principle to mixtures that either is cytotoxic or evaluated as positive was proposed. On a final note, we also developed workflows that integrate structure-based and in vitro-based mixture DST. The proposed workflows enable the application of the appropriate DST, which serves as a point of departure in the quantitative sensitization risk assessment.
Assuntos
Dermatite Alérgica de Contato , Linhagem Celular , Dermatite Alérgica de Contato/etiologia , Humanos , Técnicas In Vitro , Medição de Risco/métodos , PeleRESUMO
Assessment of human health risk requires an understanding of antigen dose metrics associated with toxicity. Whereas assessment of the human health risk for delayed-type hypersensitivity is understood, the metrics remain unclear for percutaneous immediate-type hypersensitivity (ITH) mediated by IgE/IgG1. In this work, we aimed to investigate the dose metric for percutaneous ITH mediated by IgE/IgG1 responses. Papain, which causes ITH via percutaneous sensitization in humans, was used to sensitize guinea pigs and mice. The total dose per animal or dose per unit area was adjusted to understand the drivers of sensitization. Passive cutaneous anaphylaxis (PCA) and enzyme-linked immunosorbent assay (ELISA) for papain-specific IgG1 enabled quantification of the response in guinea pigs. In mice, the number of antigen-bearing B cells in the draining lymph nodes (DLN) was calculated using flow cytometry papain-specific IgG1 and IgE levels were quantified by ELISA. PCA positive test rates and the amounts of antigen-specific antibody corresponded with total dose per animal, not dose per unit area. Furthermore, the number of B cells taking up antigen within DLN also correlated with total dose. These findings indicate that the total antigen dose is the important metric for percutaneous IgE/IgG1-mediated ITH.
Assuntos
Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Papaína/efeitos adversos , Animais , Ensaio de Imunoadsorção Enzimática , Cobaias , Incidência , Camundongos , Papaína/administração & dosagemRESUMO
The regulatory community is transitioning to the use of nonanimal methods for dermal sensitization assessments; however, some in vitro assays have limitations in their domain of applicability depending on the properties of chemicals being tested. This study explored the utility of epidermal sensitization assay (EpiSensA) to evaluate the sensitization potential of complex and/or "difficult to test" chemicals. Assay performance was evaluated by testing a set of 20 test chemicals including 10 methacrylate esters, 5 silicone-based compounds, 3 crop protection formulations, and 2 surfactant mixtures; each had prior in vivo data plus some in silico and in vitro data. Using the weight of evidence (WoE) assessments by REACH Lead Registrants, 14 of these chemicals were sensitizers and, six were nonsensitizers based on in vivo studies (local lymph node assay [LLNA] and/or guinea pig studies). The EpiSensA correctly predicted 16/20 materials with three test materials as false positive and one silane as false negative. This silane, classified as weak sensitizer via LLNA, also gave a "false negative" result in the KeratinoSens™ assay. Overall, consistent with prior evaluations, the EpiSensA demonstrated an accuracy level of 80% relative to available in vivo WoE assessments. In addition, potency classification based on the concentration showing positive marker gene expression of EpiSensA was performed. The EpiSensA correctly predicted the potency for all seven sensitizing methacrylates classified as weak potency via LLNA (EC3 ≥ 10%). In summary, EpiSensA could identify dermal sensitization potential of these test substances and mixtures, and continues to show promise as an in vitro alternative method for dermal sensitization.
Assuntos
Agroquímicos/toxicidade , Testes Cutâneos , Alérgenos , Alternativas aos Testes com Animais/métodos , Animais , Bioensaio , Linhagem Celular , Dermatite Alérgica de Contato , Epiderme , Cobaias , Haptenos , Humanos , Técnicas In Vitro , Ensaio Local de Linfonodo , PeleRESUMO
Skin sensitization evaluation is a key part of the safety assessment of ingredients in consumer products, which may have skin sensitizing potential. The dermal sensitization threshold (DST) concept, which is based on the concept of the thresholds of toxicological concern, has been proposed for the risk assessment of chemicals to which skin exposure is very low level. There is negligible risk of skin sensitization if a skin exposure level for the substance of interest was below the reactive DST which would protect against 95% of protein-reactive chemicals. For the remaining 5%, the substance with the defined knowledge of chemical structure (i.e., High Potency Category (HPC) rules) needs to be excluded from the application. However, the DST value for HPC chemicals has not yet been proposed. In this study, we calculated the 95th percentile probabilities estimate from distributions of skin sensitization potency data and derived a novel DST for HPC chemicals (HPC DST) of 1.5 µg/cm2. This value presents a useful default approach for unidentified substances in ingredients considering, as a worst-case scenario, that the unidentified compound may be a potent skin sensitizer. Finally, we developed a novel risk assessment workflow incorporating the HPC DST along with the previously published DSTs.
Assuntos
Alérgenos/toxicidade , Qualidade de Produtos para o Consumidor , Dermatite Alérgica de Contato/classificação , Testes Cutâneos/métodos , Pele/efeitos dos fármacos , Animais , Dermatite Alérgica de Contato/diagnóstico , Humanos , Pele/patologiaRESUMO
Skin sensitization is one of the key safety endpoints for chemicals applied directly to the skin. Several integrated testing strategies (ITS) using multiple non-animal test methods have been developed to accurately evaluate the sensitizing potential of chemicals, but there is no regulatory-accepted ITS to classify a chemical as a non-sensitizer. In this study, the predictive performance of a binary test battery with KeratinoSens™ and h-CLAT compared to the local lymph node assay (LLNA) and human data was examined using comprehensive dataset of 203 chemicals. When two negative results indicate a non-sensitizer, the binary test battery provided sensitivity of 93.4% or 94.4% compared with the LLNA or human data. Taking into account the predictive limitations (i.e. high log Kow, pre-/pro-haptens and acyl transfer agents (or amine-reactive)), the binary test battery had extremely high sensitivity comparable to that of the 3 out of 3 ITS where three negative results of the DPRA, KeratinoSens™ and h-CLAT indicate a non-sensitizer. Therefore, the data from KeratinoSens™ or h-CLAT may provide partly redundant information on the molecular initiating event derived from DPRA. Taken together, the binary test battery of KeratinoSens™ and h-CLAT could be used as part of a bottom-up approach for skin sensitization hazard prediction.
Assuntos
Alérgenos/efeitos adversos , Dermatite Alérgica de Contato/diagnóstico , Ensaio Local de Linfonodo , Alternativas aos Testes com Animais , Animais , Linhagem Celular , Humanos , Sensibilidade e Especificidade , Pele/efeitos dos fármacosRESUMO
Sensitization, the prerequisite event in the development of allergic contact dermatitis, is a key parameter in both hazard and risk assessments. The pathways involved have recently been formally described in the OECD adverse outcome pathway (AOP) for skin sensitization. One single non-animal test method will not be sufficient to fully address this AOP and in many cases the use of a battery of tests will be necessary. A number of methods are now fully developed and validated. In order to facilitate acceptance of these methods by both the regulatory and scientific communities, results of the single test methods (DPRA, KeratinoSens, LuSens, h-CLAT, (m)MUSST) as well for a the simple '2 out of 3' ITS for 213 substances have been compiled and qualitatively compared to both animal and human data. The dataset was also used to define different mechanistic domains by probable protein-binding mechanisms. In general, the non-animal test methods exhibited good predictivities when compared to local lymph node assay (LLNA) data and even better predictivities when compared to human data. The '2 out of 3' prediction model achieved accuracies of 90% or 79% when compared to human or LLNA data, respectively and thereby even slightly exceeded that of the LLNA.
Assuntos
Alternativas aos Testes com Animais/métodos , Bases de Dados Factuais , Fármacos Dermatológicos/toxicidade , Pele/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Camundongos , Pele/patologia , Células U937RESUMO
The Short Time Exposure (STE) test is a simple and easy-to-perform in vitro eye irritation test, that uses the viability of SIRC cells (a rabbit corneal cell line) treated for five minutes as the endpoint. In this study, our goal was to define the applicability domain of the STE test, based on the results obtained with a set of 113 substances. To achieve this goal, chemicals were selected to represent both different chemical classes and different chemical properties, as well as to cover, in a balanced manner, the categories of eye irritation potential according to the Globally Harmonised System (GHS). Accuracy analysis indicated that the rates of false negatives for organic/inorganic salts (75.0%), hydrocarbons (33.3%) and alcohols (23.5%) were high. Many of the false negative results were for solid substances. It is noteworthy that no surfactant resulted in a false negative result in the STE test. Further examination of the physical property data and performance showed a significant improvement in the predictive accuracy, when substances with vapour pressures over 6kPa were excluded from the analyses. Our results indicate that several substances - i.e. certain solids such as salts, alcohols, hydrocarbons, and volatile substances with a vapour pressure over 6kPa - do not fall within the applicability domain of the STE test. Overall, we are encouraged by the performance and improved accuracy of the STE test.
Assuntos
Alternativas aos Testes com Animais/métodos , Córnea/efeitos dos fármacos , Irritantes/toxicidade , Animais , Células Cultivadas , Córnea/citologia , Irritantes/química , Valor Preditivo dos Testes , Coelhos , VolatilizaçãoRESUMO
Sensitive skin is a well- known skin condition showing sensory irritation to daily used products such as cosmetics or pharmaceuticals, possibly containing sensory irritants. Methylparaben (MP), widely used as a preservative, is a representative sensory irritant and hydrolyzed in the skin. We aimed to clarify the relationship between MP sensory irritation and MP hydrolysis. First, we investigated the percutaneous penetration and hydrolysis of MP by using an ex vivo pig skin system and confirmed that topically applied MP was immediately hydrolyzed to p-hydroxybenzoic acid (PHBA). We next evaluated whether MP or PHBA causes sensory irritation using a well-used stinging test in human skin and found that MP, but not PHBA, induced irritation. Additionally, MP, but not PHBA, increased intracellular calcium in cultured TRPA1-expressed HEK293 cells, supporting the stimulatory activity of MP. Five and 10 individuals with sensitive and non-sensitive skin, respectively, were selected by a questionnaire and stinging test. In their biopsied skin samples, MP hydrolytic activity was significantly lower in sensitive than non-sensitive skin. Finally, we examined the activity of carboxylesterase (CES), which promptly hydrolyzes MP to PHBA. By using specific inhibitors of CES and CES2, we found that CES1 was responsible for MP metabolism. Our study suggests that low skin metabolism of topical agents is one of the causes of skin sensory irritation and resultant sensitive skin.
Assuntos
Parabenos , Pele , Humanos , Suínos , Animais , Células HEK293 , Parabenos/toxicidade , DorRESUMO
The Short Time Exposure (STE) test evaluates eye irritation potential using a 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. MTT assays may underpredict results for some substances that directly reduce MTT (i.e., MTT reducers) or interfere with absorbance because of their strong color (i.e., strongly colored substances). Based on previous research, we selected 25 substances as MTT reducers. Of these, 13 were expected to be MTT reducers at 5% dilution (5% MTT reducers) of the STE test condition. These 13 substances were then tested to determine whether the results were interfered from direct MTT reduction. Those 5% MTT reducers that were classified as irritants based on in vivo data were identified as irritants by the STE test. In addition, the low cell viability results at 5% dilution suggested that direct MTT reduction had not occurred. Next, the remaining 5% MTT reducers that were classified as non-irritants based on in vivo data were identified as non-irritants by the STE test. We then examined two strongly colored substances. One was classified as an irritant based on in vivo data and was confirmed as an irritant by the STE test. The other was classified as a non-irritant by the STE test. This was further evaluated using a medium that did not contain MTT; the result indicated that it was a non-irritant correctly. In conclusion, the STE test is useful for evaluating eye irritation potential without the drawback of underprediction for MTT reducers and strongly colored substances.
Assuntos
Alternativas aos Testes com Animais , Córnea , Animais , Linhagem Celular , Alternativas aos Testes com Animais/métodos , Fenômenos Químicos , Sobrevivência Celular , OlhoRESUMO
The oral mucosa can become irritated by oral care products and lip cosmetics. Therefore, it is important to determine the irritation potential of their ingredients and products during safety evaluations. We developed a method for oral mucosal irritation test using EpiOral, which is a three-dimensional cultured model. Exposure of sodium lauryl sulphate (SLS) to EpiOral showed a dose-dependent decrease in cell viability. Under 120 min exposure conditions, SLS irritation was detected when 60% cell viability was set as a criterion. Evaluation of the irritancy of SLS and four other raw materials used in oral products at three laboratories under the above conditions confirmed good transferability of the test. Focused on the similarity of the oral and eye mucous, 32 chemicals categorised by the UN-GHS eye-irritation classification were evaluated to ensure the reliability of our criteria at these laboratories. The concordance rate between the UN-GHS classification and our test results was 100% for irritants and 60% for non-irritants. The good intra-laboratory reproducibility of our test was confirmed from the evaluation results of negative and positive controls, and the good inter-laboratory reproducibility was confirmed from the results of 32 chemicals. These findings showed that oral mucosal irritation can be evaluated using EpiOral.
Assuntos
Alternativas aos Testes com Animais , Mucosa Bucal , Animais , Humanos , Reprodutibilidade dos Testes , Alternativas aos Testes com Animais/métodos , Irritantes/toxicidade , LaboratóriosRESUMO
Since SARS-CoV-2 BA.5 (Omicron) emerged and spread in 2022, Omicron lineages have markedly diversified. Here we review the evolutionary trajectories and processes that underpin the emergence of these lineages, and identify the most prevalent sublineages. We discuss the potential origins of second-generation BA.2 lineages. Simple and complex recombination, antigenic drift and convergent evolution have enabled SARS-CoV-2 to accumulate mutations that alter its antigenicity. We also discuss the potential evolutionary trajectories of SARS-CoV-2 in the future.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , MutaçãoRESUMO
Animal testing of cosmetic ingredients and products has been banned in the European Union since 2013. However, in Japan, the application of new quasi-drugs requires the generation of data on acute oral toxicity through animal testing. A weight of evidence approach for assessing oral toxicity was challenged. This approach used a combination of safety data, including a neutral red uptake cytotoxicity assay using BALB/c3T3 cells (3T3-NRU cytotoxicity assay), which can assess the acute oral toxicity of quasi-drugs or cosmetic ingredients. We conclude that the step-by-step approach can be used to assess test substances that cause low acute oral toxicity, such as the median lethal dose (LD 50) > 2000 mg/kg, thereby avoiding animal testing.
RESUMO
Estimation of the percutaneous absorption is essential for the safety assessment of cosmetic and dermopharmaceutical products. Currently, an artificial membrane, Strat-M®, has been focused on as the tool which could obtain the permeation parameters close to the skin-derived values. Nevertheless, few practical methodologies using the permeation parameters for assessing percutaneous absorption under in-use conditions are available. In the present study, based on Fick's first law of diffusion, a novel mathematical model incorporating the permeation parameters as well as considering the water evaporation (Teva) was constructed. Then, to evaluate the applicability domain of our model in the case where Strat-M®-derived parameters were used, the permeation parameters were compared between the skin from edible porcine and Strat-M®. Regarding chemicals (-0.2 ≤ Log Kow ≤ 2.0), their permeation profiles were equivalent between Strat-M® and porcine skin. Therefore, for these chemicals, the percutaneous absorption was calculated using our model with the permeation parameters obtained using Strat-M® and the Teva determined by measuring the solution weight. The calculated values revealed a good correlation to the values obtained using porcine skin in finite dose experiments, suggesting that our mathematical approach with Strat-M® would be useful for the future safety assessment of cosmetic and dermopharmaceutical products.
RESUMO
INTRODUCTION: Contact hypersensitivity (CHS), a type of delayed-type hypersensitivity, is induced by hapten exposure to the skin and mucosa. We previously reported that, in a murine model of CHS, the vaginal mucosa (VM) sensitization showed lower T-cell responses as compared with the abdominal skin sensitization. To investigate mechanisms of impaired CHS by the VM sensitization, we compared migration of hapten-captured dendritic cells (DCs) in the draining lymph nodes (dLNs) and recruitment of DCs at the sensitized local sites. METHODS: Fluorescein isothiocyanate (FITC) or 2,4-dinitrofluorobenzene (DNFB) was used as hapten, and migration of FITC+ DCs in the dLNs and local recruitment of MHC class II+ and CD11c+ cells were compared between abdominal skin and VM sensitization by flow cytometric analyses and immunohistochemistry. Expression of tumor growth factor (TGF)-ß at mRNA and protein levels, and local recruitment of CD206+ cells were examined after VM sensitization. RESULTS: VM sensitization showed less numbers of FITC+ MHC class IIhigh CD11c+ migratory DCs in the dLNs at 6 and 24 h, as compared with skin sensitization. Both skin and VM sensitization induced the recruitment of dermal/submucosal DCs at 6 h, but the number of submucosal DCs in the VM was significantly decreased at 24 h. VM showed persistently higher mRNA levels of TGF-ß2/ß3 expression than those of the skin before and after sensitization. In the VM sensitization, increment of CD206+ MHC class II+ cells was observed especially at the deep lamina propria at 24 h. Most of CD206+ cells were also positive for the binding to Fc chimeric TGF-ß receptor that interacts with all TGF-ß isoforms, suggesting TGF-ß expression. CONCLUSION: DC migration to dLNs and localization of DCs at the sensitized sites are limited in the VM sensitization. Our results suggest that the existence of TGF-ß-expressing CD206+ cells may contribute less sensitization ability and CHS responses in the VM.
Assuntos
Células Dendríticas , Haptenos , Animais , Feminino , Haptenos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mucosa , Fator de Crescimento Transformador beta/metabolismoRESUMO
Epicutaneous exposure to protein allergens, such as papain, house dust mite (HDM), and ovalbumin (OVA), represents an important mode of sensitization for skin diseases including protein contact dermatitis, immunologic contact urticaria, and atopic dermatitis. These diseases are inducible by re-exposure to an allergen at both original skin sensitization and distant skin sites. In this study, we examined the serum IgE/IgG1 response, differentiation of T-helper (TH) cells, and epicutaneous TH recall response in mice pre-sensitized with protein allergens through the back skin and subsequently challenged on the ear skin. Repeated epicutaneous sensitization with allergenic proteins including papain, HDM, OVA, and protease inhibitor-treated papain, but not bovine serum albumin, induced serum allergen-specific antibody production, passive cutaneous anaphylaxis responses, and TH2 differentiation in the skin draining lymph node (DLN) cells. Sensitization with papain or HDM, which have protease activity, resulted in the differentiation of TH17 as well as TH2. In papain- or HDM-sensitized mice, a subsequent single challenge on the ear skin induced the expression of TH2 and TH17/TH22 cytokines. These results suggest that allergenic proteins induce the differentiation of TH2 in skin DLN cells and an antibody response. These findings may be useful for identifying proteins of high and low allergenic potential. Moreover, allergenic proteins containing protease activity may also differentiate TH17 and induce TH2 and TH17/TH22 recall responses at epicutaneous challenge sites. This suggests that allergen protease activity accelerates the onset of skin diseases caused by protein allergens.
Assuntos
Alérgenos , Imunoglobulina E , Animais , Camundongos , Ovalbumina , Pyroglyphidae , PeleRESUMO
BACKGROUND: Recent changes in regulatory restrictions and social opposition to animal toxicology experiments have driven the need for reliable in vitro tests for predicting the skin sensitizing potentials of a wide variety of industrial chemicals. Previously, we developed the human cell line activation test (h-CLAT) as a cell-based assay to predict the skin sensitizing potential of chemicals, and showed the correspondence between the h-CLAT and the murine local lymph node assay results. OBJECTIVES: This study was conducted to investigate the predictive performance of the h-CLAT for human skin sensitizing potential. MATERIALS/METHODS: We selected a total of 66 test chemicals with known human sensitizing potential, and tested all chemicals with the h-CLAT. We then evaluated the performance of the h-CLAT in predicting human sensitizing potential. RESULTS AND CONCLUSION: Forty-five of 51 tested sensitizers were positive in the h-CLAT, indicating relatively high sensitivity. Also, 10 of 15 non-sensitizers were correctly detected as negative. The overall agreement between human data and h-CLAT outcome was 83%. Furthermore, the h-CLAT could accurately predict the human sensitizing potential of 23 tested chemicals that were amines, heterocyclic compounds, or sulfur compounds. Our data indicate the utility of the h-CLAT for predicting the human skin sensitizing potential of a variety of chemicals.
Assuntos
Alérgenos/farmacologia , Dermatite Alérgica de Contato/etiologia , Monócitos/efeitos dos fármacos , Compostos Orgânicos/farmacologia , Alérgenos/química , Alérgenos/toxicidade , Alternativas aos Testes com Animais , Antígeno B7-2/metabolismo , Linhagem Celular Tumoral , Dermatite Alérgica de Contato/imunologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Compostos Orgânicos/química , Compostos Orgânicos/toxicidade , Valor Preditivo dos Testes , Pele/efeitos dos fármacos , Pele/imunologiaRESUMO
Epicutaneous exposure to allergenic proteins is an important sensitization route for skin diseases like protein contact dermatitis, immunologic contact urticaria, and atopic dermatitis. Environmental allergen sources such as house dust mites contain proteases, which are frequent allergens themselves. Here, the dependency of T-helper (TH) cell recall responses on allergen protease activity in the elicitation phase in mice pre-sensitized via distant skin was investigated. Repeated epicutaneous administration of a model protease allergen, i.e. papain, to the back skin of hairless mice induced skin inflammation, serum papain-specific IgE and TH2 and TH17 cytokine responses in the sensitization sites, and antigen-restimulated draining lymph node cells. In the papain-sensitized but not vehicle-treated mice, subsequent single challenge on the ear skin with papain, but not with protease inhibitor-treated papain, up-regulated the gene expression of TH2 and TH17/TH22 cytokines along with cytokines promoting these TH cytokine responses (TSLP, IL-33, IL-17C, and IL-23p19). Up-regulation of IL-17A gene expression and cells expressing RORγt occurred in the ear skin of the presensitized mice even before the challenge. In a reconstructed epidermal model with a three-dimensional culture of human keratinocytes, papain but not protease inhibitor-treated papain exhibited increasing transdermal permeability and stimulating the gene expression of TSLP, IL-17C, and IL-23p19. This study demonstrated that allergen protease activity contributed to the onset of cutaneous TH2 and TH17/TH22 recall responses on allergen re-encounter at sites distant from the original epicutaneous sensitization exposures. This finding suggested the contribution of protease-dependent barrier disruption and induction of keratinocyte-derived cytokines to the recall responses.
Assuntos
Alérgenos , Peptídeo Hidrolases , Animais , Imunoglobulina E , Camundongos , Camundongos Endogâmicos BALB C , Pele , Células Th2RESUMO
We previously developed the human cell-line activation test (h-CLAT) in vitro skin sensitisation test, based on our reported finding that a 24-hour exposure of THP-1 cells (a human monocytic leukaemia cell line) to sensitisers is sufficient to induce the augmented expression of CD86 and CD54. The aim of this study is to confirm the predictive value of h-CLAT for skin sensitisation activity by employing a larger number of test chemicals. One hundred chemicals were selected, according to their categorisation in the local lymph node assay (LLNA), as being: extreme, strong, moderate and weak sensitisers, and non-sensitisers. The correlation of the h-CLAT results with the LLNA results was 84%. There were some false negatives (e.g. benzoyl peroxide, hexyl cinnamic aldehyde) and some false positives (e.g. 1-bromobutane, diethylphthalate). Eight out of the 9 false negatives (89%) were water-insoluble chemicals. The h-CLAT could positively predict not only extreme and strong sensitisers, but also moderate and weak sensitisers, though the detection rates of weak sensitisers and non-sensitisers were comparatively low. Some sensitisers enhanced both CD86 and CD54 levels, and some enhanced the level of only one of them. The use of the combination of CD86 and CD54 induction as a positive indicator, improved the accuracy of the test. In conclusion, the h-CLAT is expected to be a useful cell-based in vitro method for predicting skin sensitisation potential.