Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 46(9): 1203-1210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661399

RESUMO

Methylmercury (MeHg) is a toxic metal that causes irreversible damage to the nervous system, making it a risk factor for neuronal degeneration and diseases. MeHg activates various cell signaling pathways, particularly the mitogen-activated protein kinase (MAPK) cascades, which are believed to be important determinants of stress-induced cell fate. However, little is known about the signaling pathways that mitigate the neurotoxic effects of MeHg. Herein, we showed that pretreatment with a p38 MAPK-specific inhibitor, SB203580, attenuates MeHg toxicity in human neuroblastoma SH-SY5Y cells, whereas pretreatment with the extracellular signaling-regulated kinase inhibitor U0126 and the c-Jun N-terminal kinase inhibitor SP600125 does not. Specifically, we quantified the levels of intracellular mercury (Hg) and found that pretreatment with SB203580 reduced Hg levels compared to MeHg treatment alone. Further analysis showed that pretreatment with SB203580 increased multidrug resistance-associated protein 2 (MRP2) mRNA levels after MeHg treatment. These results indicate that detoxification of MeHg by p38 MAPK inhibitors may involve an efflux function of MeHg by inducing MRP2 expression.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Neuroblastoma , Humanos , Compostos de Metilmercúrio/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno , Transporte Biológico
2.
Sci Rep ; 13(1): 20549, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996513

RESUMO

We introduce a three-dimensional mathematical model for the dynamics of vascular endothelial cells during sprouting angiogenesis. Angiogenesis is the biological process by which new blood vessels form from existing ones. It has been the subject of numerous theoretical models. These models have successfully replicated various aspects of angiogenesis. Recent studies using particle-based models have highlighted the significant influence of cell shape on network formation, with elongated cells contributing to the formation of branching structures. While most mathematical models are two-dimensional, we aim to investigate whether ellipsoids also form branch-like structures and how their shape affects the pattern. In our model, the shape of a vascular endothelial cell is represented as a spheroid, and a discrete dynamical system is constructed based on the simple assumption of two-body interactions. Numerical simulations demonstrate that our model reproduces the patterns of elongation and branching observed in the early stages of angiogenesis. We show that the pattern formation of the cell population is strongly dependent on the cell shape. Finally, we demonstrate that our current mathematical model reproduces the cell behaviours, specifically cell-mixing, observed in sprouts.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Morfogênese , Modelos Teóricos , Fenômenos Fisiológicos Cardiovasculares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa