Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Exp Bot ; 74(6): 1758-1769, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36629282

RESUMO

Plants recognize the direction of a light source and exhibit phototropic responses. Physiological studies have predicted that differences in the light intensity received by the cells on the irradiated and shaded sides of a coleoptile or hypocotyl cause differences in the amounts of photoproduct. This hypothetical photoproduct appears to regulate a signaling pathway that controls cell elongation in which cells under lower light intensity elongate more than those under higher light intensity. This results in a bending growth toward a light source and has been proposed as the photoproduct-gradient model of phototropism. In this review, we summarize recent findings on the photosensory adaptation mechanisms involving a blue-light photoreceptor, phototropin1 (phot1), ROOT PHOTOTROPISM2, NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and another photoreceptor family, the phytochromes. The current evidence demonstrates that, in addition to the transition of the phot1-NPH3 photoreceptor complexes to their active state, the presence of a certain population of the phot1-NPH3 complexes showing a steady state, even in a light environment, is essential for recognition of the light source direction in phototropism. This is consistent with the photoproduct-gradient model, and a dissociation state of the phot1-NPH3 complex would be considered an entity of the hypothetical photoproduct in this model.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fototropismo/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/metabolismo , Luz
2.
Plant Cell ; 32(6): 2004-2019, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32213636

RESUMO

The Arabidopsis (Arabidopsis thaliana) blue light photoreceptor phototropin1 (phot1) is a blue light-activated Ser/Thr protein kinase that mediates various light responses, including phototropism. The function of phot1 in hypocotyl phototropism is dependent on the light induction of ROOT PHOTOTROPISM2 (RPT2) proteins within a broad range of blue light intensities. It is not yet known however how RPT2 contributes to the photosensory adaptation of phot1 to high intensity blue light and the phototropic responses under bright light conditions. We show that RPT2 suppresses the activity of phot1 and demonstrate that RPT2 binds to the PHOT1 light, oxygen or voltage sensing1 (LOV1) domain that is required for its high photosensitivity. Our biochemical analyses revealed that RPT2 inhibits autophosphorylation of phot1, suggesting that it suppresses the photosensitivity and/or kinase activity of phot1 through the inhibition of LOV1 function. We found that RPT2 proteins are degraded via a ubiquitin-proteasome pathway when phot1 is inactive and are stabilized under blue light in a phot1-dependent manner. We propose that RPT2 is a molecular rheostat that maintains a moderate activation level of phot1 under any light intensity conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/genética
3.
J Infect Chemother ; 29(8): 800-802, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37075979

RESUMO

Leptospirosis, a zoonotic disease characterized by a spectrum of influenza-like symptoms, can manifest as severe cases so called Weil's disease. Early diagnosis and treatment are crucial to avoid the potentially fatal course of the disease. Within 24 hours of the initial administration of antibiotics, patients may experience the Jarisch-Herxheimer reaction (JHR), characterized by chills, fever, hypotension, and impaired consciousness. The Okinawa Prefecture, where our hospital is situated, boasts the highest incidence rate of leptospirosis among all regions in Japan. This reports our encounter with the initial leptospirosis case after a period of 16 years within the Okinawa Prefecture. This case exhibited JHR and required the utilization of noradrenaline (NA). Despite evidence indicating that JHR does not correlate with mortality, we contend that diagnosis of Weil's disease necessitates admission to an intensive care unit (ICU) and vigilant monitoring for JHR, as it may result in impairment of general condition and fatal outcome, as observed in our case.


Assuntos
Leptospirose , Doença de Weil , Humanos , Doença de Weil/tratamento farmacológico , Leptospirose/diagnóstico , Leptospirose/tratamento farmacológico , Antibacterianos/efeitos adversos , Norepinefrina/uso terapêutico , Japão/epidemiologia
4.
Plant Physiol ; 187(2): 981-995, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608954

RESUMO

Photosensory adaptation, which can be classified as sensor or effector adaptation, optimizes the light sensing of living organisms by tuning their sensitivity to changing light conditions. During the phototropic response in Arabidopsis (Arabidopsis thaliana), the light-dependent expression controls of blue-light (BL) photoreceptor phototropin 1 (phot1) and its modulator ROOT PHOTOTROPISM2 (RPT2) are known as the molecular mechanisms underlying sensor adaptation. However, little is known about effector adaption in plant phototropism. Here, we show that control of the phosphorylation status of NONPHOTOTROPIC HYPOCOTYL3 (NPH3) leads to effector adaptation in hypocotyl phototropism. We generated unphosphorable and phosphomimetic NPH3 proteins on seven phosphorylation sites in the etiolated seedlings of Arabidopsis. Unphosphorable NPH3 showed a shortening of its retention time in the cytosol and caused an inability to adapt to very low fluence rates of BL (∼10-5 µmol m-2 s-1) during the phototropic response. In contrast, the phosphomimetic NPH3 proteins had a lengthened retention time in the cytosol and could not enable the adaptation to BL at fluence rates of 10-3 µmol m-2 s-1 or more. Our results indicate that the activation level of phot1 and the corresponding phosphorylation level of NPH3 determine the dissociation rate and the reassociation rate of NPH3 on the plasma membrane, respectively. These mechanisms may moderately maintain the active state of phot1 signaling across a broad range of BL intensities and contribute to the photosensory adaptation of phot1 signaling during the phototropic response in hypocotyls.


Assuntos
Arabidopsis , Fototropismo , Arabidopsis/genética , Arabidopsis/fisiologia , Fosforilação , Fototropismo/fisiologia , Transdução de Sinais
5.
Plant Physiol ; 186(4): 2037-2050, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618101

RESUMO

Root hair cells form the primary interface of plants with the soil environment, playing key roles in nutrient uptake and plant defense. In legumes, they are typically the first cells to become infected by nitrogen-fixing soil bacteria during root nodule symbiosis. Here, we report a role for the CELLULOSE SYNTHASE-LIKE D1 (CSLD1) gene in root hair development in the legume species Lotus japonicus. CSLD1 belongs to the cellulose synthase protein family that includes cellulose synthases and cellulose synthase-like proteins, the latter thought to be involved in the biosynthesis of hemicellulose. We describe 11 Ljcsld1 mutant alleles that impose either short (Ljcsld1-1) or variable (Ljcsld1-2 to 11) root hair length phenotypes. Examination of Ljcsld1-1 and one variable-length root hair mutant, Ljcsld1-6, revealed increased root hair cell wall thickness, which in Ljcsld1-1 was significantly more pronounced and also associated with a strong defect in root nodule symbiosis. Lotus japonicus plants heterozygous for Ljcsld1-1 exhibited intermediate root hair lengths, suggesting incomplete dominance. Intragenic complementation was observed between alleles with mutations in different CSLD1 domains, suggesting CSLD1 function is modular and that the protein may operate as a homodimer or multimer during root hair development.


Assuntos
Glucosiltransferases/genética , Lotus/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Glucosiltransferases/metabolismo , Lotus/enzimologia , Lotus/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética
6.
Medicina (Kaunas) ; 58(4)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35454347

RESUMO

The concept of minimally invasive spine therapy (MIST) has been proposed as a treatment strategy to reduce the need for overall patient care, including not only minimally invasive spine surgery (MISS) but also conservative treatment and rehabilitation. To maximize the effectiveness of patient care in spine surgery, the educational needs of medical students, residents, and patient rehabilitation can be enhanced by digital transformation (DX), including virtual reality (VR), augmented reality (AR), mixed reality (MR), and extended reality (XR), three-dimensional (3D) medical images and holograms; wearable sensors, high-performance video cameras, fifth-generation wireless system (5G) and wireless fidelity (Wi-Fi), artificial intelligence, and head-mounted displays (HMDs). Furthermore, to comply with the guidelines for social distancing due to the unexpected COVID-19 pandemic, the use of DX to maintain healthcare and education is becoming more innovative than ever before. In medical education, with the evolution of science and technology, it has become mandatory to provide a highly interactive educational environment and experience using DX technology for residents and medical students, known as digital natives. This study describes an approach to pre- and intraoperative medical education and postoperative rehabilitation using DX in the field of spine surgery that was implemented during the COVID-19 pandemic and will be utilized thereafter.


Assuntos
Realidade Aumentada , COVID-19 , Educação Médica , Inteligência Artificial , Educação Médica/métodos , Humanos , Pandemias
7.
Plant Physiol ; 180(2): 1119-1131, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30918082

RESUMO

Phototropin (phot) receptor kinases play important roles in promoting plant growth by controlling light-capturing processes, such as phototropism. Phototropism is mediated through the action of NON-PHOTOTROPIC HYPOCOTYL3 (NPH3), which is dephosphorylated following phot activation. However, the functional significance of this early signaling event remains unclear. Here, we show that the onset of phototropism in dark-grown (etiolated) seedlings of Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) is enhanced by greening (deetiolation). Red and blue light were equally effective in promoting phototropism in Arabidopsis, consistent with our observations that deetiolation by phytochrome or cryptochrome was sufficient to enhance phototropism. Increased responsiveness did not result from an enhanced sensitivity to the phytohormone auxin, nor does it involve the phot-interacting protein, ROOT PHOTOTROPISM2. Instead, deetiolated seedlings showed attenuated levels of NPH3 dephosphorylation and diminished relocalization of NPH3 from the plasma membrane during phototropism. Likewise, etiolated seedlings that lack the PHYTOCHROME-INTERACTING FACTORS (PIFs) PIF1, PIF3, PIF4, and PIF5 displayed reduced NPH3 dephosphorylation and enhanced phototropism, consistent with their constitutive photomorphogenic phenotype in darkness. Phototropic enhancement could also be achieved in etiolated seedlings by lowering the light intensity to diminish NPH3 dephosphorylation. Thus, phototropism is enhanced following deetiolation through the modulation of a phosphorylation rheostat, which in turn sustains the activity of NPH3. We propose that this dynamic mode of regulation enables young seedlings to maximize their establishment under changing light conditions, depending on their photoautotrophic capacity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Estiolamento/fisiologia , Fototropismo/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Criptocromos/metabolismo , Estiolamento/efeitos dos fármacos , Estiolamento/efeitos da radiação , Proteínas de Fluorescência Verde/metabolismo , Hipocótilo/efeitos dos fármacos , Hipocótilo/fisiologia , Hipocótilo/efeitos da radiação , Ácidos Indolacéticos/farmacologia , Luz , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Fototropismo/efeitos dos fármacos , Fototropismo/efeitos da radiação , Fitocromo/metabolismo , Agregados Proteicos , Plântula/efeitos dos fármacos , Plântula/fisiologia , Plântula/efeitos da radiação
8.
J Virol ; 92(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29118122

RESUMO

Influenza virus motility is based on cooperation between two viral spike proteins, hemagglutinin (HA) and neuraminidase (NA), and is a major determinant of virus infectivity. To translocate a virus particle on the cell surface, HA molecules exchange viral receptors and NA molecules accelerate the receptor exchange of HA. This type of virus motility was recently identified in influenza A virus (IAV). To determine if other influenza virus types have a similar receptor exchange mechanism-driven motility, we investigated influenza C virus (ICV) motility on a receptor-fixed glass surface. This system excludes receptor mobility, which makes it more desirable than a cell surface for demonstrating virus motility by receptor exchange. Like IAV, ICV was observed to move across the receptor-fixed surface. However, in contrast to the random movement of IAV, a filamentous ICV strain, Ann Arbor/1/50 (AA), moved in a straight line, in a directed manner, and at a constant rate, whereas a spherical ICV strain, Taylor/1233/47 (Taylor), moved randomly, similar to IAV. The AA and Taylor viruses each moved with a combination of gradual (crawling) and rapid (gliding) motions, but the distances of crawling and gliding for the AA virus were shorter than those of the Taylor virus. Our findings indicate that like IAV, ICV also has a motility that is driven by the receptor exchange mechanism. However, compared with IAV movement, filamentous ICV movement is highly regulated in both direction and speed. Control of ICV movement is based on its specific motility employing short crawling and gliding motions as well as its own filamentous morphology.IMPORTANCE Influenza virus enters into a host cell for infection via cellular endocytosis. Human influenza virus infects epithelial cells of the respiratory tract, the surfaces of which are hidden by abundant cilia that are inactive in endocytosis. An open question is the manner by which the virus migrates to endocytosis-active domains. In analyzing individual virus behaviors through single-virus tracking, we identified a novel function of the hemagglutinin and esterase of influenza C virus (ICV) as the motility machinery. Hemagglutinin iteratively exchanges a viral receptor, causing virus movement. Esterase degrades the receptors along the trajectory traveled by the virus and prevents the virus from moving backward, causing directional movement. We propose that ICV has a unique motile machinery directionally controlled via hemagglutinin sensing the receptor density manipulated by esterase.


Assuntos
Gammainfluenzavirus/fisiologia , Gammainfluenzavirus/ultraestrutura , Infecções por Orthomyxoviridae/virologia , Animais , Embrião de Galinha , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Proteínas Virais/metabolismo , Vírion/fisiologia , Vírion/ultraestrutura
9.
J Exp Bot ; 70(20): 5929-5941, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31376280

RESUMO

Phototropin1 (phot1) perceives low- to high-fluence blue light stimuli and mediates both the first and second positive phototropisms. High-fluence blue light is known to induce autophosphorylation of phot1, leading to the second positive phototropism. However, the phosphorylation status of phot1 by low-fluence blue light that induces the first positive phototropism had not been observed. Here, we conducted a phosphoproteomic analysis of maize coleoptiles to investigate the fluence-dependent phosphorylation status of Zmphot1. High-fluence blue light induced phosphorylation of Zmphot1 at several sites. Notably, low-fluence blue light significantly increased the phosphorylation level of Ser291 in Zmphot1. Furthermore, Ser291-phosphorylated and Ser369Ser376-diphosphorylated peptides were found to be more abundant in the low-fluence blue light-irradiated sides than in the shaded sides of coleoptiles. The roles of these phosphorylation events in phototropism were explored by heterologous expression of ZmPHOT1 in the Arabidopsis thaliana phot1phot2 mutant. The first positive phototropism was restored in wild-type ZmPHOT1-expressing plants; however, plants expressing S291A-ZmPHOT1 or S369AS376A-ZmPHOT1 showed significantly reduced complementation rates. All transgenic plants tested in this study exhibited a normal second positive phototropism. These findings provide the first indication that low-fluence blue light induces phosphorylation of Zmphot1 and that this induced phosphorylation is crucial for the first positive phototropism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Luz , Fototropismo/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Fosforilação/genética , Fosforilação/efeitos da radiação , Fototropismo/genética , Fototropismo/efeitos da radiação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/efeitos da radiação , Zea mays/genética , Zea mays/metabolismo , Zea mays/efeitos da radiação
10.
Plant Cell Physiol ; 59(5): 1060-1071, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490064

RESUMO

Regulation of protein function by phosphorylation and dephosphorylation is an important mechanism in many cellular events. The phototropin blue-light photoreceptors, plant-specific AGCVIII kinases, are essential for phototropic responses. Members of the D6 PROTEIN KINASE (D6PK) family, representing a subfamily of the AGCVIII kinases, also contribute to phototropic responses, suggesting that possibly further AGCVIII kinases may potentially control phototropism. The present study investigates the functional roles of Arabidopsis (Arabidopsis thaliana) AGCVIII kinases in hypocotyl phototropism. We demonstrate that D6PK family kinases are not only required for the second but also for the first positive phototropism. In addition, we find that a previously uncharacterized AGCVIII protein, AGC1-12, is involved in the first positive phototropism and gravitropism. AGC1-12 phosphorylates serine residues in the cytoplasmic loop of PIN-FORMED 1 (PIN1) and shares phosphosite preferences with D6PK. Our work strongly suggests that the D6PK family and AGC1-12 are critical components for both hypocotyl phototropism and gravitropism, and that these kinases control tropic responses mainly through regulation of PIN-mediated auxin transport by protein phosphorylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Hipocótilo/enzimologia , Hipocótilo/fisiologia , Fototropismo/fisiologia , Proteínas Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes Reporter , Hipocótilo/efeitos da radiação , Ácidos Indolacéticos/metabolismo , Luz , Família Multigênica , Mutação/genética , Fosforilação/efeitos da radiação , Fototropismo/efeitos da radiação
11.
Plant Cell Physiol ; 59(4): 823-835, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401292

RESUMO

An asymmetric auxin distribution pattern is assumed to underlie the tropic responses of seed plants. It is unclear, however, whether this pattern is required for root negative phototropism. We here demonstrate that asymmetric auxin distribution is not required to establish root phototropism in Arabidopsis. Our detailed analyses of auxin reporter genes indicate that auxin accumulates on the irradiated side of roots in response to an incidental gravitropic stimulus caused by phototropic bending. Further, an agravitropic mutant showed a suppression of this accumulation with an enhancement of the phototropic response. In this context, our pharmacological and genetic analyses revealed that both polar auxin transport and auxin biosynthesis are critical for the establishment of root gravitropism, but not for root phototropism, and that defects in these processes actually enhance phototropic responses in roots. The auxin response factor double mutant arf7 arf19 and the auxin receptor mutant tir1 showed a slight reduction in phototropic curvatures in roots, suggesting that the transcriptional regulation by some specific ARF proteins and their regulators is at least partly involved in root phototropism. However, the auxin antagonist PEO-IAA [α-(phenylethyl-2-one)-indole-3-acetic acid] suppressed root gravitropism and enhanced root phototropism, suggesting that the TIR1/AFB auxin receptors and ARF transcriptional factors play minor roles in root phototropism. Taken together, we conclude from our current data that the phototropic response in Arabidopsis roots is induced by an unknown mechanism that does not require asymmetric auxin distribution and that the Cholodny-Went hypothesis probably does not apply to root phototropism.


Assuntos
Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Fototropismo , Raízes de Plantas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo
12.
Drug Metab Dispos ; 46(5): 628-635, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29437875

RESUMO

The identification of drug transporters expressed in human skin and interindividual differences in gene expression is important for understanding the role of drug transporters in human skin. In the present study, we evaluated the expression of ATP-binding cassette (ABC) and solute carrier (SLC) transporters using human skin tissues. In skin samples, ABCC3 was expressed at the highest levels, followed by SLCO3A1, SLC22A3, SLC16A7, ABCA2, ABCC1, and SLCO2B1. Among the quantitated transporters, ABCC3 accounted for 20.0% of the total mean transporter mRNA content. The expression of ABCC3 mRNA showed large interindividual variability (9.5-fold). None of the single nucleotide polymorphisms tested (-1767G>A, -1328G>A, -1213C>G, -897delC, -260T>A, and -211C>T) in the promoter region of the ABCC3 gene showed a significant change in ABCC3 mRNA levels. ABCC3 expression levels negatively correlated with the methylation status of the CpG island (CGI) located approximately 10 kilobase pairs upstream of ABCC3 (Rs: -0.323, P < 0.05). The reporter gene assay revealed a significant increase in transcriptional activity in the presence of CGI. ABCC3 mRNA was upregulated in HaCaT cells by the demethylating agent 5-aza-2'-deoxycytidine. Furthermore, the deletion of the region surrounding CGI using the clustered regularly interspaced short palindromic repeat/Cas9 system resulted in significantly lower ABCC3 mRNA levels than those in control clones in HaCaT cells. Herein, we demonstrated large interindividual differences in the expression of drug transporters in human skin. CGI may function as an enhancer of the transcription of ABCC3, and methylation levels in CGI contribute to the variability of ABCC3 expression in human skin.


Assuntos
Metilação de DNA/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Pele/metabolismo , Transcrição Gênica/genética , Trifosfato de Adenosina/genética , Adulto , Transporte Biológico/genética , Ilhas de CpG/genética , Expressão Gênica/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Transportadores de Ácidos Monocarboxílicos/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Adulto Jovem
13.
Plant Cell ; 27(4): 1098-112, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25873385

RESUMO

Living organisms adapt to changing light environments via mechanisms that enhance photosensitivity under darkness and attenuate photosensitivity under bright light conditions. In hypocotyl phototropism, phototropin1 (phot1) blue light photoreceptors mediate both the pulse light-induced, first positive phototropism and the continuous light-induced, second positive phototropism, suggesting the existence of a mechanism that alters their photosensitivity. Here, we show that light induction of ROOT PHOTOTROPISM2 (RPT2) underlies photosensory adaptation in hypocotyl phototropism of Arabidopsis thaliana. rpt2 loss-of-function mutants exhibited increased photosensitivity to very low fluence blue light but were insensitive to low fluence blue light. Expression of RPT2 prior to phototropic stimulation in etiolated seedlings reduced photosensitivity during first positive phototropism and accelerated second positive phototropism. Our microscopy and biochemical analyses indicated that blue light irradiation causes dephosphorylation of NONPHOTOTROPIC HYPOCOTYL3 (NPH3) proteins and mediates their release from the plasma membrane. These phenomena correlate closely with the desensitization of phot1 signaling during the transition period from first positive phototropism to second positive phototropism. RPT2 modulated the phosphorylation of NPH3 and promoted reconstruction of the phot1-NPH3 complex on the plasma membrane. We conclude that photosensitivity is increased in the absence of RPT2 and that this results in the desensitization of phot1. Light-mediated induction of RPT2 then reduces the photosensitivity of phot1, which is required for second positive phototropism under bright light conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Fototropismo/fisiologia , Proteínas de Arabidopsis/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fototropismo/genética , Proteínas Serina-Treonina Quinases
14.
Beilstein J Org Chem ; 14: 182-186, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441140

RESUMO

Discribed in this article is a versatile and practical method for the synthesis of C3-perfluoroalkyl-substituted phthalides in a one-pot manner. Upon treatment of KF or triethylamine, 2-cyanobenzaldehyde reacted with (perfluoroalkyl)trimethylsilanes via nucleophilic addition and subsequent intramolecular cyclization to give perfluoroalkylphthalides in good yields.

15.
Plant Cell Physiol ; 58(8): 1350-1363, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505371

RESUMO

Microtubules are dynamic filaments, the assembly and disassembly of which are under precise control of various associated proteins, including motor proteins and regulatory enzymes. In Arabidopsis thaliana, two such proteins are the ARMADILLO-REPEAT KINESIN 1 (ARK1), which promotes microtubule disassembly, and the NIMA-RELATED KINASE 6 (NEK6), which has a role in organizing microtubule arrays. Previous yeast two-hybrid and in vitro pull-down assays determined that NEK6 can interact with ARK1 through the latter protein's Armadillo-repeat (ARM) cargo domain. To explore the function of the ARM domain, we generated fluorescent reporter fusion proteins to ARK1 lacking the ARM domain (ARK1ΔARM-GFP) and to the ARM domain alone (ARM-GFP). Both of these constructs strongly associated with the growing plus ends of microtubules, but only ARK1ΔARM-GFP was capable of inducing microtubule catastrophe and rescuing the ark1-1 root hair phenotype. These results indicate that neither the ARM domain nor NEK6's putative interaction with it is required for ARK1 to induce microtubule catastrophe. In further exploration of the ARK1-NEK6 relationship, we demonstrated that, despite evidence that NEK6 can phosphorylate ARK1 in vitro, the in vivo distribution and function of ARK1 were not affected by the loss of NEK6, and vice versa. Moreover, NEK6 and ARK1 were found to have overlapping but non-identical distribution on microtubules, and hormone treatments known to affect NEK6 activity did not stimulate interaction. These findings suggest that ARK1 and NEK6 function independently in microtubule dynamics and cell morphogenesis. Despite the results of this functional analysis, we found that overexpression of the ARM domain led to complete loss of NEK6 transcription, suggesting that the ARM domain might have a regulatory role in NEK6 expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Aminoácidos Cíclicos/farmacologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Giberelinas/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinesinas/genética , Microtúbulos/genética , Mutação , Fosforilação , Plantas Geneticamente Modificadas , Domínios e Motivos de Interação entre Proteínas
16.
Plant J ; 77(3): 352-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24299123

RESUMO

Indole-3-acetic acid (IAA), an auxin plant hormone, is biosynthesized from tryptophan. The indole-3-pyruvic acid (IPyA) pathway, involving the tryptophan aminotransferase TAA1 and YUCCA (YUC) enzymes, was recently found to be a major IAA biosynthetic pathway in Arabidopsis. TAA1 catalyzes the conversion of tryptophan to IPyA, and YUC produces IAA from IPyA. Using a chemical biology approach with maize coleoptiles, we identified 5-(4-chlorophenyl)-4H-1,2,4-triazole-3-thiol (yucasin) as a potent inhibitor of IAA biosynthesis in YUC-expressing coleoptile tips. Enzymatic analysis of recombinant AtYUC1-His suggested that yucasin strongly inhibited YUC1-His activity against the substrate IPyA in a competitive manner. Phenotypic analysis of Arabidopsis YUC1 over-expression lines (35S::YUC1) demonstrated that yucasin acts in IAA biosynthesis catalyzed by YUC. In addition, 35S::YUC1 seedlings showed resistance to yucasin in terms of root growth. A loss-of-function mutant of TAA1, sav3-2, was hypersensitive to yucasin in terms of root growth and hypocotyl elongation of etiolated seedlings. Yucasin combined with the TAA1 inhibitor l-kynurenine acted additively in Arabidopsis seedlings, producing a phenotype similar to yucasin-treated sav3-2 seedlings, indicating the importance of IAA biosynthesis via the IPyA pathway in root growth and leaf vascular development. The present study showed that yucasin is a potent inhibitor of YUC enzymes that offers an effective tool for analyzing the contribution of IAA biosynthesis via the IPyA pathway to plant development and physiological processes.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Oxigenases/antagonistas & inibidores , Reguladores de Crescimento de Plantas/metabolismo , Triazóis/farmacologia , Zea mays/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Vias Biossintéticas , Cotilédone/efeitos dos fármacos , Cotilédone/enzimologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/química , Indóis/metabolismo , Mutação , Oxigenases/genética , Fenótipo , Reguladores de Crescimento de Plantas/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/enzimologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Bibliotecas de Moléculas Pequenas , Triazóis/química , Triptofano Transaminase/antagonistas & inibidores , Triptofano Transaminase/genética , Zea mays/enzimologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento
17.
Plant Cell Physiol ; 56(11): 2100-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26412782

RESUMO

Establishment of a nitrogen-fixing symbiosis between legumes and rhizobia not only requires sufficient photosynthate, but also the sensing of the ratio of red to far red (R/FR) light. Here, we show that R/FR light sensing also positively influences the arbuscular mycorrhizal (AM) symbiosis of a legume and a non-legume through jasmonic acid (JA) and strigolactone (SL) signaling. The level of AM colonization in high R/FR light-grown tomato and Lotus japonicus significantly increased compared with that determined for low R/FR light-grown plants. Transcripts for JA-related genes were also elevated under high R/FR conditions. The root exudates derived from high R/FR light-grown plants contained more (+)-5-deoxystrigol, an AM-fungal hyphal branching inducer, than those from low R/FR light-grown plants. In summary, high R/FR light changes not only the levels of JA and SL synthesis, but also the composition of plant root exudates released into the rhizosphere, in this way augmenting the AM symbiosis.


Assuntos
Ciclopentanos/metabolismo , Lactonas/metabolismo , Lotus/microbiologia , Micorrizas/fisiologia , Oxilipinas/metabolismo , Transdução de Sinais , Solanum lycopersicum/microbiologia , Genes de Plantas , Luz , Lotus/fisiologia , Solanum lycopersicum/fisiologia , Microbiologia do Solo , Simbiose
18.
Plant Cell Physiol ; 56(8): 1641-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26076971

RESUMO

The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Oxigenases/metabolismo , Fenilacetatos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Reporter , Oxigenases/genética , Plantas Geneticamente Modificadas , Transdução de Sinais , Zea mays/genética , Zea mays/crescimento & desenvolvimento
19.
Plant Physiol ; 166(3): 1535-45, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25281709

RESUMO

Several members of the AGCVIII kinase subfamily, which includes PINOID (PID), PID2, and WAVY ROOT GROWTH (WAG) proteins, have previously been shown to phosphorylate PIN-FORMED (PIN) auxin transporters and control the auxin flow in plants. PID has been proposed as a key component of the phototropin signaling pathway that induces phototropic responses, although the responses were not significantly impaired in the pid single and pid wag1 wag2 triple mutants. This raises questions about the functional roles of the PID family in phototropic responses. Here, we investigated hypocotyl phototropism in the pid pid2 wag1 wag2 quadruple mutant in detail to clarify the roles of the PID family in Arabidopsis (Arabidopsis thaliana). The pid quadruple mutants exhibited moderate responses in continuous light-induced phototropism with a decrease in growth rates of hypocotyls and normal responses in pulse-induced phototropism. However, they showed serious defects in enhancements of pulse-induced phototropic curvatures and lateral fluorescent auxin transport by red light pretreatment. Red light pretreatment significantly reduced the expression level of PID, and the constitutive expression of PID prevented pulse-induced phototropism, irrespective of red light pretreatment. This suggests that the PID family plays a significant role in phytochrome-mediated phototropic enhancement but not the phototropin signaling pathway. Red light treatment enhanced the intracellular accumulation of PIN proteins in response to the vesicle-trafficking inhibitor brefeldin A in addition to increasing their expression levels. Taken together, these results suggest that red light preirradiation enhances phototropic curvatures by up-regulation of PIN proteins, which are not being phosphorylated by the PID family.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Hipocótilo/fisiologia , Fototropismo/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Luz , Família Multigênica , Mutação , Fitocromo/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética
20.
Plant Cell Physiol ; 55(3): 497-506, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24334375

RESUMO

Phototropism is caused by differential cell elongation between the irradiated and shaded sides of plant organs, such as the stem. It is widely accepted that an uneven auxin distribution between the two sides crucially participates in this response. Plant-specific blue-light photoreceptors, phototropins (phot1 and phot2), mediate this response. In grass coleoptiles, the sites of light perception and phototropic bending are spatially separated. However, these sites are less clearly distinguished in dicots. Furthermore, the exact placement of the action of each phototropic signaling factor remains unknown. Here, we investigated the spatial aspects of phototropism using spotlight irradiation with etiolated Arabidopsis seedlings. The results demonstrated that the topmost part of about 1.1 mm of the hypocotyl constituted the light-responsive region in which both light perception and actual bending occurred. In addition, cotyledons and the shoot apex were dispensable for the response. Hence, the response was more region autonomous in dicots than in monocots. We next examined the elongation rates, the levels of phot1 and the auxin-reporter gene expression along the hypocotyl during the phototropic response. The light-responsive region was more active than the non-responsive region with respect to all of those parameters.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Plântula/metabolismo , Plântula/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Hipocótilo/efeitos dos fármacos , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Fototropinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa