Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Biol ; 101(3): 613-627, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35678211

RESUMO

Farmed anguillid eels are frequently stocked into natural fresh waters to enhance eel resources, but little is known about what happens to these eels or their interactions with wild eels after stocking. A recent study observed a depressed survival and growth rate of farmed Japanese eels when they were reared with wild eels, which indicated that wild eels might interfere with the survival and growth of farmed-and-stocked eels through intraspecific competition. To contribute to improving eel stocking efficiency, the growth of farmed-and-stocked Japanese eels was compared among four rivers with different wild eel densities using mark-and-recapture studies. Based on the 2-year recapture survey after stocking, it was found that the density of the farmed-and-stocked eels was not significantly different among rivers. The daily growth rates of farmed-and-stocked eels in the rivers with lower wild eel density were significantly higher than those of the eels stocked into the rivers with higher wild eel density. The farmed-and-stocked eels moved significantly greater distances downstream than wild eels that showed sedentary behaviour. This and previous studies indicate that significant questions remain about the effectiveness of stocking farmed eels into water bodies where naturally recruited wild eels are present.


Assuntos
Anguilla , Animais , Água Doce , Rios
2.
Naturwissenschaften ; 104(11-12): 100, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138930

RESUMO

Freshwater biodiversity has been severely threatened in recent years, and to conserve endangered species, their distribution and breeding habitats need to be clarified. However, identifying breeding sites in a large area is generally difficult. Here, by combining the emerging environmental DNA (eDNA) analysis with subsequent traditional collection surveys, we successfully identified a breeding habitat for the critically endangered freshwater fish Acheilognathus typus in the mainstream of Omono River in Akita Prefecture, Japan, which is one of the original habitats of this species. Based on DNA cytochrome B sequences of A. typus and closely related species, we developed species-specific primers and a probe that were used in real-time PCR for detecting A. typus eDNA. After verifying the specificity and applicability of the primers and probe on water samples from known artificial habitats, eDNA analysis was applied to water samples collected at 99 sites along Omono River. Two of the samples were positive for A. typus eDNA, and thus, small fixed nets and bottle traps were set out to capture adult fish and verify egg deposition in bivalves (the preferred breeding substrate for A. typus) in the corresponding regions. Mature female and male individuals and bivalves containing laid eggs were collected at one of the eDNA-positive sites. This was the first record of adult A. typus in Omono River in 11 years. This study highlights the value of eDNA analysis to guide conventional monitoring surveys and shows that combining both methods can provide important information on breeding sites that is essential for species' conservation.


Assuntos
Cruzamento , Ecossistema , Espécies em Perigo de Extinção , Peixes/fisiologia , Rios , Animais , Bivalves , Citocromos b/genética , Feminino , Peixes/genética , Japão , Masculino , Reação em Cadeia da Polimerase , Rios/química
3.
Anal Sci ; 39(5): 721-728, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36859696

RESUMO

Loss of biodiversity is a serious concern, and amphibians are particularly threatened. Most small salamanders in Japan are endangered. Distributional information is fundamental to the conservation of these rare species; however, small salamanders are generally difficult to locate or catch. Environmental DNA analysis is an effective survey method for monitoring such rare species. The conventional polymerase chain reaction (PCR) method, which combines PCR amplification with subsequent electrophoresis, and the real-time PCR method, which uses fluorescent material, are commonly used for this purpose. In this study, a comparison of these two detection methods was conducted using a rare salamander species, Hynobius boulengeri, as a model case. We compared three points: (i) detection sensitivity, (ii) influence of environmental factors related to detection, and (iii) time and financial costs of the two methods. To perform this comparison, we developed a real-time PCR detection assay, conducted field surveys, and compared the time and financial costs of conventional and real-time PCR methods. The comparison showed no statistical difference in the detection sensitivity from field samples, and the effects of environmental factors tended to be similar. In addition, the financial cost was lower for the conventional PCR method while the time cost was lower for the real-time PCR method. Therefore, selecting eDNA detection methods based on objectives, time, and financial costs will promote efficient monitoring and contribute to the conservation of rare species.


Assuntos
DNA Ambiental , Urodelos , Animais , Urodelos/genética , DNA Ambiental/genética , Reação em Cadeia da Polimerase em Tempo Real , Japão , Monitoramento Ambiental/métodos
4.
Trop Med Health ; 51(1): 71, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115141

RESUMO

BACKGROUND: Mycetoma is a chronic disease affecting the skin and subcutaneous tissue endemic in the tropical and subtropical regions. Several bacteria and fungi can cause mycetoma, but fungal mycetoma (eumycetoma) is challenging because the treatment requires a combination of a long-term antifungal agent and surgery. Although the transmission route has not yet been elucidated, infection from the soil is a leading hypothesis. However, there are few soil investigation studies, and the geographical distribution of mycetoma pathogens is not well documented. Here, we used multiplex real-time PCR technology to identify three fungal species from soil samples. METHODS: In total, 64 DNA samples were extracted from soil collected in seven villages in an endemic area in Sennar State, Sudan, in 2019. Primers and fluorescent probes specifically targeting the ribosomal DNA of Madurella mycetomatis, Falciformispora senegalensis, and F. tompkinsii were designed. RESULTS: Multiplex real-time PCR was performed and identified the major pathogen, M. mycetomatis that existed in most sites (95%). In addition, two other pathogens were identified from some sites. This is the first report on the use of this technique for identifying the eumycetoma causative microorganisms. CONCLUSIONS: This study demonstrated that soil DNA investigation can elucidate the risk area of mycetoma-causative agents. The results will contribute to the design of prevention measures, and further large-scale studies may be effective in understanding the natural habitats of mycetoma pathogens.

5.
PLoS Negl Trop Dis ; 16(3): e0010274, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35275915

RESUMO

Mycetoma is a tropical disease caused by several fungi and bacteria present in the soil. Fungal mycetoma and eumycetoma are especially challenging to treat; therefore, prevention, early diagnosis, and early treatment are important, but it is also necessary to understand the geographic distribution of these pathogenic fungi. In this study, we used DNA metabarcoding methodology to identify fungal species from soil samples. Soil sampling was implemented at seven villages in an endemic area of Sennar State in Sudan in 2019, and ten sampling sites were selected in each village according to land-use conditions. In total, 70 soil samples were collected from ground surfaces, and DNA in the soil was extracted with a combined method of alkaline DNA extraction and a commercial soil DNA extraction kit. The region for universal primers was selected to be the ribosomal internal transcribed spacer one region for metabarcoding. After the second PCR for DNA library preparation, the amplicon-based DNA analysis was performed using next-generation sequencing with two sets of universal primers. A total of twelve mycetoma-causative fungal species were identified, including the prime agent, Madurella mycetomatis, and additional pathogens, Falciformispora senegalensis and Falciformispora tompkinsii, in 53 soil samples. This study demonstrated that soil DNA metabarcoding can elucidate the presence of multiple mycetoma-causative fungi, which may contribute to accurate diagnosis for patient treatment and geographical mapping.


Assuntos
Besouros , Madurella , Micetoma , Animais , DNA , Primers do DNA , DNA Fúngico/análise , DNA Fúngico/genética , Humanos , Madurella/genética , Micetoma/microbiologia , Solo , Sudão/epidemiologia
6.
PLoS One ; 17(8): e0272653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947597

RESUMO

Preventing mosquito-borne infectious diseases requires that vector mosquitoes are monitored and controlled. Targeting immature mosquitoes (eggs, larvae, and pupae), which have less mobility than adults, is an effective management approach. However, conducting these surveys is often difficult due to the limitations of morphological classification and survey costs. The application of environmental DNA (eDNA) analysis can solve these issues because it allows easy estimation of species distribution and morphology-independent species identification. Although a few previous studies have reported mosquito eDNA detection, there is a gap in knowledge regarding the dynamics related to the persistence of immature mosquito eDNA. We used Culex pipiens pallens, a vector of West Nile fever, as a model species. First, we developed a species-specific detection assay and confirmed its specificity using in silico and in vitro tests. Next, we conducted laboratory experiments using breeding tanks. Water samples were collected at each developmental stage. In addition, water samples were collected daily until the seventh day after emergence from the pupae. We quantified eDNA using real-time PCR with the developed assay to investigate the dynamics of mosquito eDNA. The specificity of the developed assay was confirmed by in silico and in vitro tests. Mosquito eDNA was detected at all developmental stages and detected up to seven days after emergence of pupae. In particular, high concentrations of eDNA were detected immediately after hatching from eggs and after emergence from pupae. Highly frequent positive eDNA signals were continuously detected between egg hatching and pupa hatching. Mosquito eDNA was detected immediately after the eggs were introduced, and eDNA-positive detections continued until pupae emergence, suggesting that eDNA analysis is useful for monitoring mosquito larvae. In the future, monitoring immature mosquitoes using eDNA analysis will contribute to prevent mosquito-borne infectious diseases.


Assuntos
Doenças Transmissíveis , Culex , Culicidae , DNA Ambiental , Animais , Culex/genética , Culicidae/genética , Larva/genética , Mosquitos Vetores/genética , Pupa/genética , Água
7.
Sci Rep ; 11(1): 10712, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040019

RESUMO

Alien ant species (Formicidae, Hymenoptera) cause serious damage worldwide. Early detection of invasion and rapid management are significant for controlling these species. However, these attempts are sometimes hindered by the need for direct detection techniques, such as capture, visual observation, or morphological identification. In this study, we demonstrated that environmental DNA (eDNA) analysis can be used as a monitoring tool for alien ants using Linepithema humile (Argentine ant), one of the most invasive ants, as a model species. We designed a new real-time PCR assay specific to L. humile and successfully detected eDNA from the surface soil. The reliability of eDNA analysis was substantiated by comparing eDNA detection results with traditional survey results. Additionally, we examined the relationship between eDNA concentration and distance from nests and trails. Our results support the effectiveness of eDNA for alien ant monitoring and suggest that this new method could improve our ability to detect invasive ant species.


Assuntos
DNA Ambiental/isolamento & purificação , Monitoramento Ambiental , Solo/química , Animais , Formigas/química , Formigas/genética , DNA Ambiental/genética , Humanos , Espécies Introduzidas
8.
Sci Rep ; 11(1): 16830, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417484

RESUMO

Environmental DNA (eDNA) can be a powerful tool for detecting the distribution and abundance of target species. This study aimed to test the longevity of eDNA in marine sediment through a tank experiment and to use this information to reconstruct past faunal occurrence. In the tank experiment, juvenile jack mackerel (Trachurus japonicus) were kept in flow-through tanks with marine sediment for two weeks. Water and sediment samples from the tanks were collected after the removal of fish. In the field trial, sediment cores were collected in Moune Bay, northeast Japan, where unusual blooms of jellyfish (Aurelia sp.) occurred after a tsunami. The samples were analyzed by layers to detect the eDNA of jellyfish. The tank experiment revealed that after fish were removed, eDNA was not present in the water the next day, or subsequently, whereas eDNA was detectable in the sediment for 12 months. In the sediment core samples, jellyfish eDNA was detected at high concentrations above the layer with the highest content of polycyclic aromatic hydrocarbons, reflecting tsunami-induced oil spills. Thus, marine sediment eDNA preserves a record of target species for at least one year and can be used to reconstruct past faunal occurrence.


Assuntos
DNA Ambiental/genética , Perciformes/genética , Cifozoários/genética , Tsunamis , Animais , Monitoramento Ambiental/métodos , Peixes/genética , Sedimentos Geológicos , Preservação Biológica/métodos
9.
Case Rep Otolaryngol ; 2021: 7500273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691798

RESUMO

Primary nasopharyngeal mycobacteriosis is a rare disease. We present a case in which skull base bone erosion appeared and was alleviated during the course of the treatment. Bone complications occur in osteoarticular mycobacteriosis, but their occurrence in primary nasopharyngeal mycobacteriosis has not been reported. A 77-year-old immunocompromised Asian woman presented with a right occipitotemporal headache. An ulcerative mass covered with a thick yellowish discharge was found in the roof and posterior walls of the right nasopharynx. Because histopathological examination indicated the presence of mycobacterial infection, we began using antituberculosis medication for the treatment because of the possibility of primary nasopharyngeal tuberculosis. However, this was followed by glossopharyngeal and vagus nerve paralysis. Computed tomography (CT) showed a diffuse enhancing mucosal irregularity in the nasopharynx with bony erosion of the external skull base. Deep tissue biopsy was repeated to differentiate it from malignant lesions, and drainage of pus from the right nasopharynx was confirmed. Subsequently, the headache, neurological findings, and the yellowish discharge disappeared, and the bony erosion of the external skull base was alleviated. Surgical intervention should also be considered for drug-resistant mycobacteriosis. We concluded that mycobacteriosis should also be considered apart from carcinoma even if CT shows a diffuse enhancing mucosal irregularity with bone destruction in the nasopharynx.

10.
J Wildl Dis ; 57(4): 954-958, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410412

RESUMO

The spread of antimicrobial-resistant bacteria (ARB) in natural environments including wild animals is a concern for public health. Birds cover large areas, and some fly across borders to migrate in large flocks. As a migratory bird, the Greater White-fronted Goose (Anser albifrons) travels to Miyajimanuma, North Japan, each spring and autumn. To investigate the ARB in migratory birds and their surroundings, we collected 110 fecal samples of A. albifrons and 18 water samples from Miyajimanuma in spring and autumn of 2019. Isolation of Escherichia coli was performed using selective agars with or without antimicrobials (cefazolin and nalidixic acid). Isolates of E. coli were recovered from 56 fecal samples (50.9%) and five water samples (27.8%) on agars without antimicrobials. No isolates were recovered on agars with antimicrobials. One E. coli isolate derived from a fecal sample exhibited resistance to ß-lactams (ampicillin and cefazolin), whereas all other isolates exhibited susceptibility to all tested antimicrobials. The resistant isolate harbored blaACC, which could be transferred to other bacteria and confer resistance to ß-lactams. These results suggest a low prevalence of antimicrobial resistance in wild migratory birds and their living environments; however, wild migratory birds sometimes carry ARB harboring transferrable antimicrobial resistance genes and therefore present a risk of spreading antimicrobial resistance.


Assuntos
Anti-Infecciosos , Escherichia coli , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Ecossistema , Gansos , Japão , Testes de Sensibilidade Microbiana/veterinária , Prevalência
11.
Biodivers Data J ; 8: e56876, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33199966

RESUMO

In freshwater ecosystems, invasive salmonid fishes can have a significant impact on native fish species. Detecting the invasion and its negative effects is critical for the conservation of native fish communities. We examined the species composition and seasonal changes in the freshwater fish community, including salmonids, on the Kamikawa Plain, Hokkaido Island, Japan, using environmental DNA (eDNA) metabarcoding. We detected 23 fish species in 176 samples collected from 16 sites over 12 months (October 2018 - August 2019). Between 11 and 20 species were detected at each site, including five native salmonids (Oncorhynchus masou, Oncorhynchus keta, Parahucho perryi, Salvelinus leucomaenis leucomaenis and Salvelinus malma krascheninnikova). The invasive alien rainbow trout Oncorhynchus mykiss was detected at all 16 sites and it was the most commonly detected salmonid. Although we found no obvious competitive exclusion of native salmonids by rainbow trout in the study area, the invasive species occurred more often and at more sites than any of the natives. We also determined the occurrence and seasonal changes in the fish community, classified as native salmonids, invasive rainbow trout, Cypriniformes and other benthic fishes. There were fewer species overall in winter, but the sites with higher species richness in winter were on the lower reaches of the river. In addition, we detected domestic invaders, such as the topmouth gudgeon, Pseudorasbora parva, although they were less prevalent than rainbow trout. These results show the effectiveness of eDNA metabarcoding, which can be used for surveying species richness at an ecosystem scale. In particular, the detection of the early stages of establishment and spread of invasive species can be achieved by eDNA monitoring.

12.
PLoS One ; 15(4): e0231718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32310994

RESUMO

Water sampling and filtration of environmental DNA (eDNA) analysis have been performed by several different methods, and each method may yield a different species composition or eDNA concentration. Here, we investigated the eDNA of seawater samples directly collected by SCUBA to compare two widely used filtration methods: open filtration with a glass filter (GF/F) and enclosed filtration (Sterivex). We referred to biomass based on visual observation data collected simultaneously to clarify the difference between organism groups. Water samples were collected at two points in the Sea of Japan in May, September and December 2018. The respective samples were filtered through GF/F and Sterivex for eDNA extraction. We quantified the eDNA concentration of five fish and two cnidarian species by quantitative polymerase chain reaction (qPCR) using species-specific primers/probe sets. A strong correlation of eDNA concentration was obtained between GF/F and Sterivex; the intercepts and slopes of the linear regression lines were slightly different in fish and jellyfish. The amount of eDNA detected using the GF/F filtration method was higher than that detected using Sterivex when the eDNA concentration was high; the opposite trend was observed when the eDNA concentration was relatively low. The concentration of eDNA correlated with visually estimated biomass; eDNA concentration per biomass in jellyfish was approximately 700 times greater than that in fish. We conclude that GF/F provides an advantage in collecting a large amount of eDNA, whereas Sterivex offers superior eDNA sensitivity. Both filtration methods are effective in estimating the spatiotemporal biomass size of target marine species.


Assuntos
Cnidários/genética , DNA Ambiental/genética , Filtração/instrumentação , Peixes/genética , Água do Mar/análise , Animais , DNA Ambiental/análise , DNA Ambiental/isolamento & purificação , Desenho de Equipamento , Cifozoários/genética
13.
Commun Biol ; 3(1): 558, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033377

RESUMO

Far too little is known about the long-term dynamics of populations for almost all macro-organisms. Here, we examined the utility of sedimentary DNA techniques to reconstruct the dynamics in the "abundance" of a species, which has not been previously defined. We used fish DNA in marine sediments and examined whether it could be used to track the past dynamics of pelagic fish abundance in marine waters. Quantitative PCR for sedimentary DNA was applied on sediment-core samples collected from anoxic bottom sediments in Beppu Bay, Japan. The DNA of three dominant fish species (anchovy, sardine, and jack mackerel) were quantified in sediment sequences spanning the last 300 years. Temporal changes in fish DNA concentrations are consistent with those of landings in Japan for all three species and with those of sardine fish scale concentrations. Thus, sedimentary DNA could be used to track decadal-centennial dynamics of fish abundance in marine waters.


Assuntos
DNA/análise , Peixes , Sedimentos Geológicos/análise , Animais , DNA/genética , Peixes/genética , Japão , Dinâmica Populacional , Fatores de Tempo
14.
Zool Stud ; 59: e17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262841

RESUMO

Although populations of anguillid eels have declined remarkably in recent decades, monitoring data on the spatial and temporal variation in their dynamics are often limited, particularly for tropical eel species. As there are often sympatries of multiple eel species in tropical rivers, identifying eel species based solely on morphological characteristics is challenging. Basin-scale surveys were conducted in rivers of southern Japan and northern Taiwan to investigate (1) whether the spatial distribution, abundance, and biomass of the tropical eel species, the giant mottled eel (Anguilla marmorata), can be monitored in rivers by comparing the results obtained from environmental DNA (eDNA) analysis with data from electrofishing and (2) the riverine distribution of the sympatric A. marmorata and the temperate eel species, the Japanese eel (Anguilla japonica), in this region using eDNA analysis. Although we found an much lower abundance of A. marmorata in the study region, we identified the eDNA of the species from all of the study sites (21 sites) where it was collected by electrofishing, in addition to 22 further study sites where it was not collected directly. This indicates that eDNA analysis has a greater sensitivity for detecting A. marmorata, making it a powerful tool for monitoring the spatial distribution of the species in rivers. We found a significant positive relationship between eDNA concentration and both the abundance and biomass of A. marmorata, and eDNA concentration seemed to better reflect the abundance of the species than did biomass. eDNA of both A. japonica and A. marmorata was identified from almost all rivers, indicating the sympatry of these species in this region, although the degree of sympatry differed between rivers. Though the eDNA concentration of A. japonica decreased significantly with increasing distance from the river mouth, no significant relationship was found for A. marmorata. This study is the first to demonstrate the potential usefulness of eDNA analysis for estimating the spatial distribution, abundance, and biomass of tropical eels in rivers and to further apply this method to investigate sympatry among anguillid species. eDNA analysis can help in obtaining data on the population dynamics of tropical eels, providing invaluable information for managing these species.

15.
Ecol Evol ; 10(12): 5354-5367, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32607158

RESUMO

Environmental DNA (eDNA) analysis has seen rapid development in the last decade, as a novel biodiversity monitoring method. Previous studies have evaluated optimal strategies, at several experimental steps of eDNA metabarcoding, for the simultaneous detection of fish species. However, optimal sampling strategies, especially the season and the location of water sampling, have not been evaluated thoroughly. To identify optimal sampling seasons and locations, we performed sampling monthly or at two-monthly intervals throughout the year in three dam reservoirs. Water samples were collected from 15 and nine locations in the Miharu and Okawa dam reservoirs in Fukushima Prefecture, respectively, and five locations in the Sugo dam reservoir in Hyogo Prefecture, Japan. One liter of water was filtered with glass-fiber filters, and eDNA was extracted. By performing MiFish metabarcoding, we successfully detected a total of 21, 24, and 22 fish species in Miharu, Okawa, and Sugo reservoirs, respectively. From these results, the eDNA metabarcoding method had a similar level of performance compared to conventional long-term data. Furthermore, it was found to be effective in evaluating entire fish communities. The number of species detected by eDNA survey peaked in May in Miharu and Okawa reservoirs, and in March and June in Sugo reservoir, which corresponds with the breeding seasons of many of fish species inhabiting the reservoirs. In addition, the number of detected species was significantly higher in shore, compared to offshore samples in the Miharu reservoir, and a similar tendency was found in the other two reservoirs. Based on these results, we can conclude that the efficiency of species detection by eDNA metabarcoding could be maximized by collecting water from shore locations during the breeding seasons of the inhabiting fish. These results will contribute in the determination of sampling seasons and locations for fish fauna survey via eDNA metabarcoding, in the future.

16.
Mol Ecol Resour ; 17(6): e25-e33, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28449215

RESUMO

The advent of environmental DNA (eDNA) analysis methods has enabled rapid and wide-range ecological monitoring in aquatic ecosystems, but there is a dearth of information on eDNA degradation. The results of previous studies suggest that the decay rate of eDNA varies depending on the length of DNA fragments. To examine this hypothesis, we compared temporal change in copy number of long eDNA fragments (719 bp) with that of short eDNA fragments (127 bp). First, we isolated rearing water from a target fish species, Japanese Jack Mackerel (Trachurus japonicus), and then quantified the copy number of the long and short eDNA fragments in 1 L water samples after isolating the water from the fish. Long DNA fragments showed a higher decay rate than short fragments. Next, we measured the eDNA copy numbers of long and short DNA fragments using field samples, and compared them with fish biomass as measured by echo intensity. Although a previous study suggested that short eDNA fragments could be overestimated because of nontarget eDNA from a nearby fish market and carcasses, the eDNA concentrations of long fragments were correlated with echo intensity. This suggests that the concentration of longer eDNA fragments reflects fish biomass more accurately than the previous study by removing the effects of the fish market and carcasses. The length-related differences in eDNA have a substantial potential to improve estimation of species biomass.


Assuntos
Biomassa , DNA/análise , DNA/isolamento & purificação , Metagenômica/métodos , Metagenômica/normas , Perciformes/crescimento & desenvolvimento , Água/análise , Animais , DNA/química , DNA/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa