Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Plant Physiol ; 194(2): 1166-1180, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878763

RESUMO

Calcium (Ca2+) is a major ion in living organisms, where it acts as a second messenger for various biological phenomena. The Golgi apparatus retains a higher Ca2+ concentration than the cytosol and returns cytosolic Ca2+ to basal levels after transient elevation in response to environmental stimuli such as osmotic stress. However, the Ca2+ transporters localized in the Golgi apparatus of plants have not been clarified. We previously found that a wild-type (WT) salt-tolerant Arabidopsis (Arabidopsis thaliana) accession, Bu-5, showed osmotic tolerance after salt acclimatization, whereas the Col-0 WT did not. Here, we isolated a Bu-5 background mutant gene, acquired osmotolerance-defective 6 (aod6), which reduces tolerance to osmotic, salt, and oxidative stresses, with a smaller plant size than the WT. The causal gene of the aod6 mutant encodes CATION CALCIUM EXCHANGER4 (CCX4). The aod6 mutant was more sensitive than the WT to both deficient and excessive Ca2+. In addition, aod6 accumulated higher Ca2+ than the WT in the shoots, suggesting that Ca2+ homeostasis is disturbed in aod6. CCX4 expression suppressed the Ca2+ hypersensitivity of the csg2 (calcium sensitive growth 2) yeast (Saccharomyces cerevisiae) mutant under excess CaCl2 conditions. We also found that aod6 enhanced MAP kinase 3/6 (MPK3/6)-mediated immune responses under osmotic stress. Subcellular localization analysis of mGFP-CCX4 showed GFP signals adjacent to the trans-Golgi apparatus network and co-localization with Golgi apparatus-localized markers, suggesting that CCX4 localizes in the Golgi apparatus. These results suggest that CCX4 is a Golgi apparatus-localized transporter involved in the Ca2+ response and plays important roles in osmotic tolerance, shoot Ca2+ content, and normal growth of Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Rede trans-Golgi/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Biochem Biophys Res Commun ; 717: 150049, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38714014

RESUMO

Acquired osmotolerance induced by initial exposure to mild salt stress is widespread across Arabidopsis thaliana ecotypes, but the mechanism underlying it remains poorly understood. To clarify it, we isolated acquired osmotolerance-deficient 1 (aod1), a mutant highly sensitive to osmotic stress, from ion-beam-irradiated seeds of Zu-0, an ecotype known for its remarkably high osmotolerance. Aod1 showed growth inhibition with spotted necrotic lesions on the rosette leaves under normal growth conditions on soil. However, its tolerance to salt and oxidative stresses was similar to that of the wild type (WT). Genetic and genome sequencing analyses suggested that the gene causing aod1 is identical to CONSTITUTIVELY ACTIVATED CELL DEATH 1 (CAD1). Complementation with the WT CAD1 gene restored the growth and osmotolerance of aod1, indicating that mutated CAD1 is responsible for the observed phenotypes in aod1. Although CAD1 is known to act as a negative regulator of immune response, transcript levels in the WT increased in response to osmotic stress. Aod1 displayed enhanced immune response and cell death under normal growth conditions, whereas the expression profiles of osmotic response genes were comparable to those of the WT. These findings suggest that autoimmunity in aod1 is detrimental to osmotolerance. Overall, our results suggest that CAD1 negatively regulates immune responses under osmotic stress, contributing to osmotolerance in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pressão Osmótica , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Imunidade Vegetal/genética
3.
Plant Physiol ; 189(2): 1128-1138, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302643

RESUMO

Initial exposure of plants to osmotic stress caused by drought, cold, or salinity leads to acclimation, termed acquired tolerance, to subsequent severe stresses. Acquired osmotolerance induced by salt stress is widespread across Arabidopsis (Arabidopsis thaliana) accessions and is conferred by disruption of a nucleotide-binding leucine-rich repeat gene, designated ACQUIRED OSMOTOLERANCE. De-repression of this gene under osmotic stress causes detrimental autoimmunity via ENHANCED DISEASE SUSCEPTIBILITY1 and PHYTOALEXIN DEFICIENT4 (PAD4). However, the mechanism underlying acquired osmotolerance remains poorly understood. Here, we isolated an acquired osmotolerance-defective mutant (aod13) by screening 30,000 seedlings of an ion beam-mutagenized M2 population of Bu-5, an accession with acquired osmotolerance. We found that AOD13 encodes the dual-specificity phosphatase MAP KINASE PHOSPHATASE1 (MKP1), which negatively regulates MITOGEN-ACTIVATED PROTEIN KINASE3/6 (MPK3/6). Consistently, MPK3/6 activation was greater in aod13 than in the Bu-5 wild-type (WT). The aod13 mutant was sensitive to osmotic stress but tolerant to salt stress. Under osmotic stress, pathogenesis-related genes were strongly induced in aod13 but not in the Bu-5 WT. Loss of PAD4 in pad4 aod13 plants did not restore acquired osmotolerance, implying that activation of immunity independent of PAD4 renders aod13 sensitive to osmotic stress. These findings suggest that AOD13 (i.e. MKP1) promotes osmotolerance by suppressing the PAD4-independent immune response activated by MPK3/6.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Fosfatases/genética , Sesquiterpenos , Fitoalexinas
4.
Physiol Plant ; 175(2): e13898, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36974502

RESUMO

Low-molecular-weight sugars serve as protectants for cellular membranes and macromolecules under the condition of dehydration caused by environmental stress such as desiccation and freezing. These sugars also affect plant growth and development by provoking internal signaling pathways. We previously showed that both sugars and the stress hormone abscisic acid (ABA) enhance desiccation tolerance of gemma, a dormant propagule of the liverwort Marchantia polymorpha. To determine the role of ABA in sugar responses in liverworts, we generated genome-editing lines of M. polymorpha ABA DEFICIENT 1 (MpABA1) encoding zeaxanthin epoxidase, which catalyzes the initial reaction toward ABA biosynthesis. The generated Mpaba1 lines that accumulated only a trace amount of endogenous ABA showed reduced desiccation tolerance and reduced sugar responses. RNA-seq analysis of sucrose-treated gemmalings of M. polymorpha revealed that expression of a large part of sucrose-induced genes was reduced in Mpaba1 compared to the wild-type. Furthermore, Mpaba1 accumulated smaller amounts of low-molecular-weight sugars in tissues upon sucrose treatment than the wild-type, with reduced expression of genes for sucrose synthesis, sugar transporters, and starch-catabolizing enzymes. These results indicate that endogenous ABA plays a role in the regulation of the positive feedback loop for sugar-induced sugar accumulation in liverworts, enabling the tissue to have desiccation tolerance.


Assuntos
Ácido Abscísico , Marchantia , Ácido Abscísico/metabolismo , Marchantia/genética , Marchantia/metabolismo , Açúcares/metabolismo , Dessecação , Sacarose/metabolismo
5.
Plant Cell Physiol ; 63(3): 296-304, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-34865144

RESUMO

Plants are often exposed not only to short-term (S) heat stress but also to long-term (L) heat stress over several consecutive days. A few Arabidopsis mutants defective in L-heat tolerance have been identified, but the molecular mechanisms involved are less well understood than those involved in S-heat tolerance. To elucidate the mechanisms, we isolated the new sensitive to long-term heat5 (sloh5) mutant from EMS-mutagenized seeds of L-heat-tolerant Col-0. The sloh5 mutant was hypersensitive to L-heat but not to S-heat, osmo-shock, salt-shock or oxidative stress. The causal gene, SLOH5, is identical to elongatedmitochondria1 (ELM1), which plays an important role in mitochondrial fission in conjunction with dynamin-related proteins DRP3A and DRP3B. Transcript levels of ELM1, DRP3A and DRP3B were time-dependently increased by L-heat stress, and drp3a drp3b double mutants were hypersensitive to L-heat stress. The sloh5 mutant contained massively elongated mitochondria. L-heat stress caused mitochondrial dysfunction and cell death in sloh5. Furthermore, WT plants treated with a mitochondrial myosin ATPase inhibitor were hypersensitive to L-heat stress. These findings suggest that mitochondrial fission and function are important in L-heat tolerance of Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Termotolerância , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética
6.
Biochem Biophys Res Commun ; 637: 93-99, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36384069

RESUMO

Land plants exhibit various adaptation responses to unfavorable water environments, such as drought and flooding. The phytohormone abscisic acid (ABA) and ethylene play essential roles in plant adaptation to drought and flooding, respectively. It remains largely unknown how plants integrate environmental information for water availability. In the moss Physcomitrium patens, we recently reported that not only ethylene/flooding signaling but also ABA/osmostress signaling are mediated by ethylene receptor-related sensor histidine kinases (ETR-HKs). Subfamily I ETR-HKs of this moss were found to interact with a RAF kinase (ARK) and were required for ABA-dependent activation of SNF1-related protein kinase 2 (SnRK2) via ARK activation. To elucidate the mechanisms of ARK regulation by ETR-HKs, here we employed targeted in vivo mutagenesis of PpHK5, a member of subfamily I ETR-HKs. Analyses of ABA-insensitive Pphk5 mutants indicated that PpHK5 mutations affecting the interaction with ARK resulted in loss of PpHK5 function to activate ABA signaling. We also identified a PpHK5 mutation that does not affect ARK interaction but resulted in loss of PpHK5 function. These results suggest that physical interaction between ETR-HK and ARK is essential but not sufficient for the regulation of ARK activity, and the C-terminal response regulator domain is involved in regulating ARK activation.


Assuntos
Bryopsida , Histidina Quinase/genética , Bryopsida/genética , Mutagênese , Mutação , Etilenos , Ácido Abscísico
7.
Plant Physiol ; 185(2): 533-546, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33655297

RESUMO

The Raf-like protein kinase abscisic acid (ABA) and abiotic stress-responsive Raf-like kinase (ARK) previously identified in the moss Physcomitrium (Physcomitrella) patens acts as an upstream regulator of subgroup III SNF1-related protein kinase2 (SnRK2), the key regulator of ABA and abiotic stress responses. However, the mechanisms underlying activation of ARK by ABA and abiotic stress for the regulation of SnRK2, including the role of ABA receptor-associated group A PP2C (PP2C-A), are not understood. We identified Ser1029 as the phosphorylation site in the activation loop of ARK, which provided a possible mechanism for regulation of its activity. Analysis of transgenic P. patens ark lines expressing ARK-GFP with Ser1029-to-Ala mutation indicated that this replacement causes reductions in ABA-induced gene expression, stress tolerance, and SnRK2 activity. Immunoblot analysis using an anti-phosphopeptide antibody indicated that ABA treatments rapidly stimulate Ser1029 phosphorylation in the wild type (WT). The phosphorylation profile of Ser1029 in ABA-hypersensitive ppabi1 lacking protein phosphatase 2C-A (PP2C-A) was similar to that in the WT, whereas little Ser1029 phosphorylation was observed in ABA-insensitive ark missense mutant lines. Furthermore, newly isolated ppabi1 ark lines showed ABA-insensitive phenotypes similar to those of ark lines. Therefore, ARK is a primary activator of SnRK2, preceding negative regulation by PP2C-A in bryophytes, which provides a prototype mechanism for ABA and abiotic stress responses in plants.


Assuntos
Ácido Abscísico/farmacologia , Bryopsida/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Bryopsida/enzimologia , Bryopsida/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Congelamento , Regulação da Expressão Gênica de Plantas , Fusão Gênica , Genes Reporter , Mutação de Sentido Incorreto , Fosfopeptídeos/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estresse Fisiológico
8.
Plant J ; 103(2): 634-644, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32239564

RESUMO

Given their sessile nature, land plants must use various mechanisms to manage dehydration under water-deficit conditions. Osmostress-induced activation of the SNF1-related protein kinase 2 (SnRK2) family elicits physiological responses such as stomatal closure to protect plants during drought conditions. With the plant hormone ABA receptors [PYR (pyrabactin resistance)/PYL (pyrabactin resistance-like)/RCAR (regulatory component of ABA receptors) proteins] and group A protein phosphatases, subclass III SnRK2 also constitutes a core signaling module for ABA, and osmostress triggers ABA accumulation. How SnRK2 is activated through ABA has been clarified, although its activation through osmostress remains unclear. Here, we show that Arabidopsis ABA and abiotic stress-responsive Raf-like kinases (AtARKs) of the B3 clade of the mitogen-activated kinase kinase kinase (MAPKKK) family are crucial in SnRK2-mediated osmostress responses. Disruption of AtARKs in Arabidopsis results in increased water loss from detached leaves because of impaired stomatal closure in response to osmostress. Our findings obtained in vitro and in planta have shown that AtARKs interact physically with SRK2E, a core factor for stomatal closure in response to drought. Furthermore, we show that AtARK phosphorylates S171 and S175 in the activation loop of SRK2E in vitro and that Atark mutants have defects in osmostress-induced subclass III SnRK2 activity. Our findings identify a specific type of B3-MAPKKKs as upstream kinases of subclass III SnRK2 in Arabidopsis. Taken together with earlier reports that ARK is an upstream kinase of SnRK2 in moss, an existing member of a basal land plant lineage, we propose that ARK/SnRK2 module is evolutionarily conserved across 400 million years of land plant evolution for conferring protection against drought.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pressão Osmótica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Quinases raf/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/enzimologia , Reguladores de Crescimento de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Reação em Cadeia da Polimerase , Água/metabolismo
9.
Plant Cell Physiol ; 62(2): 272-279, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33367686

RESUMO

Plants are often exposed not only to short-term (S-) heat stress but also to diurnal long-term (L-) heat stress over several consecutive days. To reveal the mechanisms underlying L-heat stress tolerance, we here used a forward genetic screen for sensitive to long-term heat (sloh) mutants and isolated sloh4. The mutant was hypersensitive to L-heat stress but not to S-heat stress. The causal gene of sloh4 was identical to MIP3 encoding a member of the MAIGO2 (MAG2) tethering complex, which is composed of the MAG2, MIP1, MIP2 and MIP3 subunits and is localized at the endoplasmic reticulum (ER) membrane. Although sloh4/mip3 was hypersensitive to L-heat stress, the sensitivity of the mag2-3 and mip1-1 mutants was similar to that of the wild type (WT). Under L-heat stress, the ER stress and the following unfolded protein response (UPR) were more pronounced in sloh4 than in the WT. Transcript levels of bZIP60-regulated UPR genes were strongly increased in sloh4 under L-heat stress. Two processes known to be mediated by INOSITOL REQUIRING ENZYME1 (IRE1) - accumulation of the spliced bZIP60 transcript and a decrease in the transcript levels of PR4 and PRX34, encoding secretory proteins - were observed in sloh4 in response to L-heat stress. These findings suggest that misfolded proteins generated in sloh4 under L-heat stress may be recognized by IRE1 but not by bZIP28, resulting in the initiation of the UPR via activated bZIP60. Therefore, it would be possible that only MIP3 in the MAG2 complex has an additional function in L-heat tolerance, which is not related to the ER-Golgi vesicle tethering.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Retículo Endoplasmático/fisiologia , Complexo de Golgi/metabolismo , Termotolerância , Proteínas de Transporte Vesicular/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Estresse do Retículo Endoplasmático , Genes de Plantas/fisiologia , Proteínas de Transporte Vesicular/genética
10.
Biochem Biophys Res Commun ; 534: 747-751, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199020

RESUMO

Plants are often exposed not only to short-term (S-) heat stress but also to diurnal long-term (L-) heat stress over several consecutive days; nevertheless, most previous studies of heat tolerance have used S-heat stress, such as 42 °C for 30-60 min, for evaluation. Yet the mechanisms underlying L-heat tolerance remain poorly understood. Here we found that hydrogen peroxide (H2O2) in Arabidopsis thaliana plants increased time-dependently under L-heat stress (37 °C, 5 days) but not under S-heat stress (42 °C, 40 min). To reveal the contribution of reactive oxygen species (ROS) scavenging to heat tolerance, we evaluated the heat tolerance of ROS mutants. Only cat2 mutants, in which catalase (CAT) activity is defective, were hypersensitive to L-heat stress, but they were S-heat tolerant. We further revealed that (1) CAT2 was induced by L-heat stress but not by S-heat stress; (2) H2O2 accumulated highly in cat2 under L-heat stress, but not in cat1, cat3, or wild type; and (3) CAT activity was significantly reduced in cat2 under both normal and L-heat conditions. These results suggest that ROS scavenging is responsible for L-heat tolerance, and CAT2 plays a crucial role. On the other hand, since overexpression of CAT2 in wild-type plants did not enhance L-heat tolerance, CAT2 activity is necessary but insufficient for increasing L-heat tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Termotolerância/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Mutação , Espécies Reativas de Oxigênio/metabolismo
11.
Plant Cell Physiol ; 61(5): 942-956, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32101300

RESUMO

Cell-to-cell communication is tightly regulated in response to environmental stimuli in plants. We previously used a photoconvertible fluorescent protein Dendra2 as a model reporter to study this process. This experiment revealed that macromolecular trafficking between protonemal cells in Physcomitrella patens is suppressed in response to abscisic acid (ABA). However, it remains unknown which ABA signaling components contribute to this suppression and how. Here, we show that ABA signaling components SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 2 (PpSnRK2) and ABA INSENSITIVE 3 (PpABI3) play roles as an essential and promotive factor, respectively, in regulating ABA-induced suppression of Dendra2 diffusion between cells (ASD). Our quantitative imaging analysis revealed that disruption of PpSnRK2 resulted in defective ASD onset itself, whereas disruption of PpABI3 caused an 81-min delay in the initiation of ASD. Live-cell imaging of callose deposition using aniline blue staining showed that, despite this onset delay, callose deposition on cross walls remained constant in the PpABI3 disruptant, suggesting that PpABI3 facilitates ASD in a callose-independent manner. Given that ABA is an important phytohormone to cope with abiotic stresses, we further explored cellular physiological responses. We found that the acquisition of salt stress tolerance is promoted by PpABI3 in a quantitative manner similar to ASD. Our results suggest that PpABI3-mediated ABA signaling may effectively coordinate cell-to-cell communication during the acquisition of salt stress tolerance. This study will accelerate the quantitative study for ABA signaling mechanism and function in response to various abiotic stresses.


Assuntos
Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Plasmodesmos/metabolismo , Ácido Abscísico/farmacologia , Bryopsida/citologia , Bryopsida/efeitos dos fármacos , Bryopsida/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Plasmodesmos/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos
12.
Plant Physiol ; 179(1): 317-328, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30442644

RESUMO

Abscisic acid (ABA) controls seed dormancy and stomatal closure through binding to the intracellular receptor Pyrabactin resistance1 (Pyr1)/Pyr1-like/regulatory components of ABA receptors (PYR/PYL/RCAR) in angiosperms. Genes encoding PYR/PYL/RCAR are thought to have arisen in the ancestor of embryophytes, but the roles of the genes in nonvascular plants have not been determined. In the liverwort Marchantia polymorpha, ABA reduces growth and enhances desiccation tolerance through increasing accumulation of intracellular sugars and various transcripts such as those of Late Embryogenesis Abundant (LEA)-like genes. In this study, we analyzed a gene designated MpPYL1, which is closely related to PYR/PYL/RCAR of angiosperms, in transgenic liverworts. Transgenic lines overexpressing MpPYL1-GFP showed ABA-hypersensitive growth with enhanced desiccation tolerance, whereas Mppyl1 generated by CRISPR-Cas9-mediated genome editing showed ABA-insensitive growth with reduced desiccation tolerance. Transcriptome analysis indicated that MpPYL1 is a major regulator of abiotic stress-associated genes, including all 35 ABA-induced LEA-like genes. Furthermore, these transgenic plants showed altered responses to extracellular Suc, suggesting that ABA and PYR/PYL/RCAR function in sugar responses. The results presented here reveal an important role of PYR/PYL/RCAR in the ABA response, which was likely acquired in the common ancestor of land plants. The results also indicate the archetypal role of ABA and its receptor in sugar response and accumulation processes for vegetative desiccation tolerance in bryophytes.


Assuntos
Ácido Abscísico/fisiologia , Hepatófitas/metabolismo , Proteínas de Plantas/fisiologia , Receptores de Superfície Celular/fisiologia , Ácido Abscísico/metabolismo , Dessecação , Perfilação da Expressão Gênica , Hepatófitas/genética , Hepatófitas/crescimento & desenvolvimento , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
13.
Plant Cell Environ ; 43(12): 2894-2911, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33459424

RESUMO

The plant hormone abscisic acid (ABA) is fundamental for land plant adaptation to water-limited conditions. Osmostress, such as drought, induces ABA accumulation in angiosperms, triggering physiological responses such as stomata closure. The core components of angiosperm ABA signalling are soluble ABA receptors, group A protein phosphatase type 2C and SNF1-related protein kinase2 (SnRK2). ABA also has various functions in non-angiosperms, however, suggesting that its role in adaptation to land may not have been angiosperm-specific. Indeed, among land plants, the core ABA signalling components are evolutionarily conserved, implying their presence in a common ancestor. Results of ongoing functional genomics studies of ABA signalling components in bryophytes and algae have expanded our understanding of the evolutionary role of ABA signalling, with genome sequencing uncovering the ABA core module even in algae. In this review, we describe recent discoveries involving the ABA core module in non-angiosperms, tracing the footprints of how ABA evolved as a phytohormone. We also cover the latest findings on Raf-like kinases as upstream regulators of the core ABA module component SnRK2. Finally, we discuss the origin of ABA signalling from an evolutionary perspective.


Assuntos
Ácido Abscísico/metabolismo , Evolução Biológica , Magnoliopsida/fisiologia , Pressão Osmótica/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Transdução de Sinais/fisiologia , Magnoliopsida/genética , Magnoliopsida/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo
14.
Plant J ; 94(4): 699-708, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29575231

RESUMO

Abscisic acid (ABA) and its signaling system are important for land plants to survive in terrestrial conditions. Here, we took a phosphoproteomic approach to elucidate the ABA signaling network in Physcomitrella patens, a model species of basal land plants. Our phosphoproteomic analysis detected 4630 phosphopeptides from wild-type P. patens and two ABA-responsive mutants, a disruptant of group-A type-2C protein phosphatase (PP2C; ppabi1a/b) and AR7, a defective mutant in ARK, identified as an upstream regulator of SnRK2. Quantitative analysis detected 143 ABA-responsive phosphopeptides in P. patens. The analysis indicated that SnRK2-mediated phosphorylation and target motifs were partially conserved in bryophytes. Our data demonstrate that the PpSnRK2B and AREB/ABF-type transcription factors are phosphorylated in vivo in response to ABA under the control of ARK. On the other hand, our data also revealed the following: (i) the entire ABA-responsive phosphoproteome in P. patens is quite diverse; (ii) P. patens PP2C affects additional pathways other than the known ABA signaling pathway; and (iii) ARK is mainly involved in ABA signaling. Taken together, we propose that the core ABA signaling pathway is essential in all land plants; however, some ABA-responsive phosphosignaling uniquely developed in bryophytes during the evolutionary process.


Assuntos
Ácido Abscísico/metabolismo , Bryopsida/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Transdução de Sinais , Motivos de Aminoácidos , Bryopsida/genética , Mutação , Fosforilação , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Proteínas Serina-Treonina Quinases , Proteômica
15.
Plant Cell Physiol ; 60(4): 738-751, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30597108

RESUMO

In multi-cellular organisms, cell-to-cell communication is crucial for adapting to changes in the surrounding environment. In plants, plasmodesmata (PD) provide a unique pathway for cell-to-cell communication. PD interconnect most cells and generate a cytoplasmic continuum, allowing the trafficking of various micro- and macromolecules between cells. This molecular trafficking through PD is dynamically regulated by altering PD permeability dependent on environmental changes, thereby leading to an appropriate response to various stresses; however, how PD permeability is dynamically regulated is still largely unknown. Moreover, studies on the regulation of PD permeability have been conducted primarily in a limited number of angiosperms. Here, we studied the regulation of PD permeability in the moss Physcomitrella patens and report that molecular trafficking through PD is rapidly and reversibly restricted by abscisic acid (ABA). Since ABA plays a key role in various stress responses in the moss, PD permeability can be controlled by ABA to adapt to surrounding environmental changes. This ABA-dependent restriction of PD trafficking correlates with a reduction in PD pore size. Furthermore, we also found that the rate of macromolecular trafficking is higher in an ABA-synthesis defective mutant, suggesting that the endogenous level of ABA is also important for PD-mediated macromolecular trafficking. Thus, our study provides compelling evidence that P. patens exploits ABA as one of the key regulators of PD function.


Assuntos
Bryopsida/metabolismo , Plasmodesmos/metabolismo , Ácido Abscísico/metabolismo , Comunicação Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/fisiologia
16.
Proc Natl Acad Sci U S A ; 112(46): E6388-96, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26540727

RESUMO

Plant response to drought and hyperosmosis is mediated by the phytohormone abscisic acid (ABA), a sesquiterpene compound widely distributed in various embryophyte groups. Exogenous ABA as well as hyperosmosis activates the sucrose nonfermenting 1 (SNF1)-related protein kinase2 (SnRK2), which plays a central role in cellular responses against drought and dehydration, although the details of the activation mechanism are not understood. Analysis of a mutant of the moss Physcomitrella patens with reduced ABA sensitivity and reduced hyperosmosis tolerance revealed that a protein kinase designated "ARK" (for "ABA and abiotic stress-responsive Raf-like kinase") plays an essential role in the activation of SnRK2. ARK encoded by a single gene in P. patens belongs to the family of group B3 Raf-like MAP kinase kinase kinases (B3-MAPKKKs) mediating ethylene, disease resistance, and salt and sugar responses in angiosperms. Our findings indicate that ARK, as a novel regulatory component integrating ABA and hyperosmosis signals, represents the ancestral B3-MAPKKKs, which multiplied, diversified, and came to have specific functions in angiosperms.


Assuntos
Bryopsida , Sistema de Sinalização das MAP Quinases/fisiologia , Pressão Osmótica/fisiologia , Proteínas de Plantas , Quinases raf , Sequência de Aminoácidos , Bryopsida/enzimologia , Bryopsida/genética , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
17.
Plant Cell Environ ; 40(2): 249-263, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27861992

RESUMO

Differences in the expression levels of aluminium (Al) tolerance genes are a known determinant of Al tolerance among plant varieties. We combined transcriptomic analysis of six Arabidopsis thaliana accessions with contrasting Al tolerance and a reverse genetic approach to identify Al-tolerance genes responsible for differences in Al tolerance between accession groups. Gene expression variation increased in the signal transduction process under Al stress and in growth-related processes in the absence of stress. Co-expression analysis and promoter single nucleotide polymorphism searching suggested that both trans-acting polymorphisms of Al signal transduction pathway and cis-acting polymorphisms in the promoter sequences caused the variations in gene expression associated with Al tolerance. Compared with the wild type, Al sensitivity increased in T-DNA knockout (KO) lines for five genes, including TARGET OF AVRB OPERATION1 (TAO1) and an unannotated gene (At5g22530). These were identified from 53 Al-inducible genes showing significantly higher expression in tolerant accessions than in sensitive accessions. These results indicate that the difference in transcriptional signalling is partly associated with the natural variation in Al tolerance in Arabidopsis. Our study also demonstrates the feasibility of comparative transcriptome analysis by using natural genetic variation for the identification of genes responsible for Al stress tolerance.


Assuntos
Adaptação Fisiológica/genética , Alumínio/toxicidade , Arabidopsis/genética , Arabidopsis/fisiologia , Ecótipo , Transcriptoma/genética , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Inativação de Genes , Ontologia Genética , Redes Reguladoras de Genes , Genes de Plantas , Estudos de Associação Genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Genética Reversa , Análise de Sequência de RNA
18.
Biochem Biophys Res Commun ; 471(4): 589-95, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26869511

RESUMO

Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation tolerance might have evolved in ancestral land plants before the separation of bryophytes and vascular plants.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica , Bryopsida/fisiologia , Secas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Bryopsida/genética , Bryopsida/metabolismo , Dessecação , Deleção de Genes , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteoma/genética , Proteoma/metabolismo , Proteômica , Sementes/metabolismo , Fatores de Transcrição/genética , Transcriptoma
19.
Biochem Biophys Res Commun ; 464(1): 318-23, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26123393

RESUMO

Eutrema salsugineum (also known as Thellungiella salsuginea and formerly Thellungiella halophila), a species closely related to Arabidopsis thaliana, shows tolerance not only to salt stress, but also to chilling, freezing, and high temperatures. To identify genes responsible for stress tolerance, we conducted Full-length cDNA Over-eXpressing gene (FOX) hunting among a collection of E. salsugineum cDNAs that were stress-induced according to gene ontology analysis or over-expressed in E. salsugineum compared with A. thaliana. We identified E. salsugineum CSP41b (chloroplast stem-loop-binding protein of 41 kDa; also known as CRB, chloroplast RNA binding; named here as EsCSP41b) as a gene that can confer heat and salinity stress tolerance on A. thaliana. A. thaliana CSP41b is reported to play an important role in the proper functioning of the chloroplast: the atcsp41b mutant is smaller and paler than wild-type plants and shows altered chloroplast morphology and photosynthetic performance. We observed that AtCSP41b-overexpressing transgenic A. thaliana lines also exhibited marked heat tolerance and significant salinity stress tolerance. The EsCSP41b-overexpressing transgenic A. thaliana lines showed significantly higher photosynthesis activity than wild-type plants not only under normal growth conditions but also under heat stress. In wild-type plants, the expression levels of both EsCSP41b and AtCSP41b were significantly reduced under heat or salinity stress. We conclude that maintenance of CSP41b expression under abiotic stresses may alleviate photoinhibition and improve survival under such stresses.


Assuntos
Arabidopsis/genética , Brassicaceae/química , Endorribonucleases/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plantas Tolerantes a Sal , Adaptação Fisiológica , Arabidopsis/classificação , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Brassicaceae/enzimologia , Brassicaceae/genética , Cloroplastos/fisiologia , DNA Complementar/genética , Endorribonucleases/metabolismo , Temperatura Alta , Fotossíntese/fisiologia , Filogenia , Proteínas de Plantas/metabolismo , Salinidade , Cloreto de Sódio/farmacologia
20.
New Phytol ; 206(1): 209-219, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25545104

RESUMO

Plants acclimate to environmental stress signals such as cold, drought and hypersalinity, and provoke internal protective mechanisms. Abscisic acid (ABA), a carotenoid-derived phytohormone, which increases in response to the stress signals above, has been suggested to play a key role in the acclimation process in angiosperms, but the role of ABA in basal land plants such as mosses, including its biosynthetic pathways, has not been clarified. Targeted gene disruption of PpABA1, encoding zeaxanthin epoxidase in the moss Physcomitrella patens was conducted to determine the role of endogenous ABA in acclimation processes in mosses. The generated ppaba1 plants were found to accumulate only a small amount of endogenous ABA. The ppaba1 plants showed reduced osmotic acclimation capacity in correlation with reduced dehydration tolerance and accumulation of late embryogenesis abundant proteins. By contrast, cold-induced freezing tolerance was less affected in ppaba1, indicating that endogenous ABA does not play a major role in the regulation of cold acclimation in the moss. Our results suggest that the mechanisms for osmotic acclimation mediated by carotenoid-derived synthesis of ABA are conserved in embryophytes and that acquisition of the mechanisms played a crucial role in terrestrial adaptation and colonization by land plant ancestors.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica , Bryopsida/fisiologia , Carotenoides/metabolismo , Oxirredutases/genética , Reguladores de Crescimento de Plantas/metabolismo , Bryopsida/genética , Congelamento , Regulação da Expressão Gênica de Plantas , Osmose , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa