RESUMO
Tissue autofluorescence of fixed tissue sections is a major concern of fluorescence microscopy. The adrenal cortex emits intense intrinsic fluorescence that interferes with signals from fluorescent labels, resulting in poor-quality images and complicating data analysis. We used confocal scanning laser microscopy imaging and lambda scanning to characterize the mouse adrenal cortex autofluorescence. We evaluated the efficacy of tissue treatment methods in reducing the intensity of the observed autofluorescence, such as trypan blue, copper sulfate, ammonia/ethanol, Sudan Black B, TrueVIEWTM Autofluorescence Quenching Kit, MaxBlockTM Autofluorescence Reducing Reagent Kit, and TrueBlackTM Lipofuscin Autofluorescence Quencher. Quantitative analysis demonstrated autofluorescence reduction by 12-95%, depending on the tissue treatment method and excitation wavelength. TrueBlackTM Lipofuscin Autofluorescence Quencher and MaxBlockTM Autofluorescence Reducing Reagent Kit were the most effective treatments, reducing the autofluorescence intensity by 89-93% and 90-95%, respectively. The treatment with TrueBlackTM Lipofuscin Autofluorescence Quencher preserved the specific fluorescence signals and tissue integrity, allowing reliable detection of fluorescent labels in the adrenal cortex tissue. This study demonstrates a feasible, easy-to-perform, and cost-effective method to quench tissue autofluorescence and improve the signal-to-noise ratio in adrenal tissue sections for fluorescence microscopy.
Assuntos
Córtex Suprarrenal , Lipofuscina , Camundongos , Animais , Corantes , Fluorescência , Microscopia de Fluorescência , Azul Tripano , Indicadores e Reagentes , Microscopia Confocal/métodosRESUMO
The adrenal glands are important endocrine organs that play a major role in the stress response. Some adrenal glands abnormalities are treated with hormone replacement therapy, which does not address physiological requirements. Modern technologies make it possible to develop gene therapy drugs that can completely cure diseases caused by mutations in specific genes. Congenital adrenal hyperplasia (CAH) is an example of such a potentially treatable monogenic disease. CAH is an autosomal recessive inherited disease with an overall incidence of 1:9500-1:20,000 newborns. To date, there are several promising drugs for CAH gene therapy. At the same time, it remains unclear how new approaches can be tested, as there are no models for this disease. The present review focuses on modern models for inherited adrenal gland insufficiency and their detailed characterization. In addition, the advantages and disadvantages of various pathological models are discussed, and ways of further development are suggested.
Assuntos
Hiperplasia Suprarrenal Congênita , Recém-Nascido , Humanos , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , Hiperplasia Suprarrenal Congênita/terapia , Glândulas Suprarrenais , Mutação , IncidênciaRESUMO
BACKGROUND: During the ongoing coronavirus disease 2019 (COVID-19) pandemic, many individuals were infected with and have cleared the virus, developing virus-specific antibodies and effector/memory T cells. An important unanswered question is what levels of T-cell and antibody responses are sufficient to protect from the infection. METHODS: In 5340 Moscow residents, we evaluated anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin M (IgM)/immunoglobulin G (IgG) titers and frequencies of the T cells specific to the membrane, nucleocapsid, and spike proteins of SARS-CoV-2, using interferon gamma (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay. Additionally, we evaluated the fractions of virus-specific CD4+ and CD8+ T cells using intracellular staining of IFN-γ and interleukin 2 followed by flow cytometry. We analyzed the COVID-19 rates as a function of the assessed antibody and T-cell responses, using the Kaplan-Meier estimator method, for up to 300 days postinclusion. RESULTS: We showed that T-cell and antibody responses are closely interconnected and are commonly induced concurrently. Magnitudes of both responses inversely correlated with infection probability. Individuals positive for both responses demonstrated the highest levels of protectivity against the SARS-CoV-2 infection. A comparable level of protection was found in individuals with antibody response only, whereas the T-cell response by itself granted only intermediate protection. CONCLUSIONS: We found that the contribution of the virus-specific antibodies to protection against SARS-CoV-2 infection is more pronounced than that of the T cells. The data on the virus-specific IgG titers may be instructive for making decisions in personalized healthcare and public anti-COVID-19 policies. Clinical Trials Registration. NCT04898140.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Imunoglobulina G , Estudos ProspectivosRESUMO
Differentiation approaches to obtain mesenchymal stem cells (MSCs) have gradually developed over the last few decades. The problem is that different protocols give different MSC types, making further research difficult. Here, we tried three different approaches to differentiate embryonic stem cells (ESCs) from early mesoderm to MSCs using serum-containing or xeno-free differentiation medium and observed differences in the cells' morphology, doubling rate, ability to form colonies, surface marker analysis, and multilineage differentiation potential of the obtained cell lines. We concluded that the xeno-free medium best fits the criteria of MSCs' morphology, growth kinetics, and surface marker characterization. In contrast, the serum-containing medium gives better potential for further MSC differentiation into osteogenic, chondrogenic, and adipogenic lineages.