RESUMO
A CoCl2·6H2O/Zn reagent using 2-(2,6-diisopropylphenyl)iminomethylpyridine (dipimp), 1,2-bis(diphenylphosphino)ethane (dppe), or 1,2-bis(diphenylphosphino)benzene (dppPh) as a ligand effectively catalyzed the cross-addition reaction of silylacetylene to internal alkynes. The reaction of some unsymmetrical internal alkynes, such as 3-arylpropargyl alcohols, proceeded in a highly regioselective manner in the presence of dppe or dppPh but gave a nearly 1:1 mixture of regioisomers in the presence of dipimp. The results of reactions using 1-deuterated 2-silylacetylene revealed that the reaction involves a direct oxidative addition of the silylacetylenic C-H bond to cobalt.
Assuntos
Alcinos/química , Derivados de Benzeno/química , Cobalto/química , Indicadores e Reagentes/química , Organofosfonatos/química , Compostos de Organossilício/química , Catálise , Ligação de Hidrogênio , Ligantes , Estrutura Molecular , Oxirredução , EstereoisomerismoRESUMO
A cobalt-catalyzed alkyne [2 + 2 + 2] cycloaddition reaction has been applied to polymerizations yielding linear polymers via selective cross-cyclotrimerization of yne-diyne monomers, which occurs in a chain-growth manner. Additionally, through control of the alkyne reactivity of the two monomers, this method was efficiently applied to the spontaneous block copolymerization of their mixture. Here we present the proposed mechanism of the catalyst transfer process of this cycloaddition polymerization.