Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Epilepsia ; 64(2): 443-455, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36318112

RESUMO

OBJECTIVE: Mutations in the genes encoding neuronal ion channels are a common cause of Mendelian neurological diseases. We sought to identify novel de novo sequence variants in cases with early infantile epileptic phenotypes and neurodevelopmental anomalies. METHODS: Following clinical diagnosis, we performed whole exome sequencing of the index cases and their parents. Identified channel variants were expressed in Xenopus oocytes and their functional properties assessed using two-electrode voltage clamp. RESULTS: We identified novel de novo variants in KCNA6 in four unrelated individuals variably affected with neurodevelopmental disorders and seizures with onset in the first year of life. Three of the four identified mutations affect the pore-lining S6 α-helix of KV 1.6. A prominent finding of functional characterization in Xenopus oocytes was that the channel variants showed only minor effects on channel activation but slowed channel closure and shifted the voltage dependence of deactivation in a hyperpolarizing direction. Channels with a mutation affecting the S6 helix display dominant effects on channel deactivation when co-expressed with wild-type KV 1.6 or KV 1.1 subunits. SIGNIFICANCE: This is the first report of de novo nonsynonymous variants in KCNA6 associated with neurological or any clinical features. Channel variants showed a consistent effect on channel deactivation, slowing the rate of channel closure following normal activation. This specific gain-of-function feature is likely to underlie the neurological phenotype in our patients. Our data highlight KCNA6 as a novel channelopathy gene associated with early infantile epileptic phenotypes and neurodevelopmental anomalies.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Humanos , Epilepsia/genética , Mutação/genética , Convulsões/genética , Canal de Potássio Kv1.6/genética
2.
Brain ; 144(9): 2659-2669, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34415322

RESUMO

Phosphoinositides are lipids that play a critical role in processes such as cellular signalling, ion channel activity and membrane trafficking. When mutated, several genes that encode proteins that participate in the metabolism of these lipids give rise to neurological or developmental phenotypes. PI4KA is a phosphoinositide kinase that is highly expressed in the brain and is essential for life. Here we used whole exome or genome sequencing to identify 10 unrelated patients harbouring biallelic variants in PI4KA that caused a spectrum of conditions ranging from severe global neurodevelopmental delay with hypomyelination and developmental brain abnormalities to pure spastic paraplegia. Some patients presented immunological deficits or genito-urinary abnormalities. Functional analyses by western blotting and immunofluorescence showed decreased PI4KA levels in the patients' fibroblasts. Immunofluorescence and targeted lipidomics indicated that PI4KA activity was diminished in fibroblasts and peripheral blood mononuclear cells. In conclusion, we report a novel severe metabolic disorder caused by PI4KA malfunction, highlighting the importance of phosphoinositide signalling in human brain development and the myelin sheath.


Assuntos
Alelos , Variação Genética/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Antígenos de Histocompatibilidade Menor/genética , Transtornos do Neurodesenvolvimento/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Humanos , Lactente , Recém-Nascido , Leucócitos Mononucleares/fisiologia , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Linhagem
3.
Hum Mutat ; 42(10): 1215-1220, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34212451

RESUMO

De novo rare damaging variants in genes involved in critical developmental pathways, notably regulation of synaptic transmission, have emerged as a frequent cause of neurodevelopmental disorders (NDD). NDD show great locus heterogeneity and for many of the associated genes, there is substantial phenotypic diversity, including epilepsy, intellectual disability, autism spectrum disorder, movement disorders, and combinations thereof. We report two unrelated patients, a young girl with early-onset refractory epilepsy, severe disability, and progressive cerebral and cerebellar atrophy, and a second girl with mild dysmorphism, global developmental delay, and moderate intellectual disability in whom trio-based whole-exome sequencing analysis uncovered de novo missense variants in CHRM1. Biochemical analyses of one of the NDD-associated variants proved that it caused a reduction in protein levels and impaired cellular trafficking. In addition, the mutated receptor showed defective activation of intracellular signaling pathways. Our data strengthen the concept that brain-reduced muscarinic signaling lowers the seizure threshold and severely impairs neurodevelopment.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Epilepsia/genética , Feminino , Humanos , Deficiência Intelectual/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Receptor Muscarínico M1/genética , Receptores Muscarínicos/genética
4.
Front Cell Dev Biol ; 12: 1321282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505260

RESUMO

SYNGAP1 haploinsufficiency results in a developmental and epileptic encephalopathy (DEE) causing generalized epilepsies accompanied by a spectrum of neurodevelopmental symptoms. Concerning interictal epileptiform discharges (IEDs) in electroencephalograms (EEG), potential biomarkers have been postulated, including changes in background activity, fixation-off sensitivity (FOS) or eye closure sensitivity (ECS). In this study we clinically evaluate a new cohort of 36 SYNGAP1-DEE individuals. Standardized questionnaires were employed to collect clinical, electroencephalographic and genetic data. We investigated electroencephalographic findings, focusing on the cortical distribution of interictal abnormalities and their changes with age. Among the 36 SYNGAP1-DEE cases 18 presented variants in the SYNGAP1 gene that had never been previously reported. The mean age of diagnosis was 8 years and 8 months, ranging from 2 to 17 years, with 55.9% being male. All subjects had global neurodevelopmental/language delay and behavioral abnormalities; 83.3% had moderate to profound intellectual disability (ID), 91.7% displayed autistic traits, 73% experienced sleep disorders and 86.1% suffered from epileptic seizures, mainly eyelid myoclonia with absences (55.3%). A total of 63 VEEGs were revised, observing a worsening of certain EEG findings with increasing age. A disorganized background was observed in all age ranges, yet this was more common among older cases. The main IEDs were bilateral synchronous and asynchronous posterior discharges, accounting for ≥50% in all age ranges. Generalized alterations with maximum amplitude in the anterior region showed as the second most frequent IED (≥15% in all age ranges) and were also more common with increasing age. Finally, diffuse fast activity was much more prevalent in cases with 6 years or older. To the best of our knowledge, this is the first study to analyze EEG features across different age groups, revealing an increase in interictal abnormalities over infancy and adolescence. Our findings suggest that SYNGAP1 haploinsufficiency has complex effects in human brain development, some of which might unravel at different developmental stages. Furthermore, they highlight the potential of baseline EEG to identify candidate biomarkers and the importance of natural history studies to develop specialized therapies and clinical trials.

5.
Seizure ; 92: 155-157, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34521063

RESUMO

Dravet syndrome (DS) is a severe infantile-onset epilepsy syndrome featuring drug resistant epilepsy, global developmental delay and intellectual disability. In addition to ataxia and progressive crouch gait, Parkinsonism has recently been reported as characteristic in young adults with DS. We describe 5 patients out of a series of 23 patients with DS who present between 12 and 24 months of age with repetitive episodes of eyelid closure, sometimes as fast as eye blinking or flickering. Consistent lack of any EEG correlate in serial video-EEG ruled out an epileptic origin. We propose that this movement disorder, namely 'eyelid stereotypies', might be an early motor trait of SCN1A-associated DS.


Assuntos
Epilepsias Mioclônicas , Espasmos Infantis , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/genética , Pálpebras , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adulto Jovem
6.
Mol Genet Metab Rep ; 26: 100690, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33365252

RESUMO

tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) deficiency causes an early onset potentially reversible acute liver failure, so far reported in less than 30 patients. We describe two new unrelated patients with an acute liver failure and a neuroimaging compatible with Leigh syndrome (LS) due to TRMU deficiency, a combination not previously reported. Our report enlarges the phenotypical spectrum of TRMU disease.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa