Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inf Fusion ; 90: 364-381, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36217534

RESUMO

The COVID-19 (Coronavirus disease 2019) pandemic has become a major global threat to human health and well-being. Thus, the development of computer-aided detection (CAD) systems that are capable of accurately distinguishing COVID-19 from other diseases using chest computed tomography (CT) and X-ray data is of immediate priority. Such automatic systems are usually based on traditional machine learning or deep learning methods. Differently from most of the existing studies, which used either CT scan or X-ray images in COVID-19-case classification, we present a new, simple but efficient deep learning feature fusion model, called U n c e r t a i n t y F u s e N e t , which is able to classify accurately large datasets of both of these types of images. We argue that the uncertainty of the model's predictions should be taken into account in the learning process, even though most of the existing studies have overlooked it. We quantify the prediction uncertainty in our feature fusion model using effective Ensemble Monte Carlo Dropout (EMCD) technique. A comprehensive simulation study has been conducted to compare the results of our new model to the existing approaches, evaluating the performance of competing models in terms of Precision, Recall, F-Measure, Accuracy and ROC curves. The obtained results prove the efficiency of our model which provided the prediction accuracy of 99.08% and 96.35% for the considered CT scan and X-ray datasets, respectively. Moreover, our U n c e r t a i n t y F u s e N e t model was generally robust to noise and performed well with previously unseen data. The source code of our implementation is freely available at: https://github.com/moloud1987/UncertaintyFuseNet-for-COVID-19-Classification.

2.
Int J Comput Assist Radiol Surg ; 18(3): 501-508, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36306056

RESUMO

PURPOSE: In brain tumor surgery, tissue shift (called brain shift) can move the surgical target and invalidate the surgical plan. A cost-effective and flexible tool, intra-operative ultrasound (iUS) with robust image registration algorithms can effectively track brain shift to ensure surgical outcomes and safety. METHODS: We proposed to employ a Siamese neural network, which was first trained using natural images and fine-tuned with domain-specific data to automatically detect matching anatomical landmarks in iUS scans at different surgical stages. An efficient 2.5D approach and an iterative re-weighted least squares algorithm are utilized to perform landmark-based registration for brain shift correction. The proposed method is validated and compared against the state-of-the-art methods using the public BITE and RESECT datasets. RESULTS: Registration of pre-resection iUS scans to during- and post-resection iUS images were executed. The results with the proposed method shows a significant improvement from the initial misalignment ([Formula: see text]) and the method is comparable to the state-of-the-art methods validated on the same datasets. CONCLUSIONS: We have proposed a robust technique to efficiently detect matching landmarks in iUS and perform brain shift correction with excellent performance. It has the potential to improve the accuracy and safety of neurosurgery.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/cirurgia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Redes Neurais de Computação , Algoritmos , Ultrassonografia de Intervenção
3.
Front Neurosci ; 13: 1325, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32009868

RESUMO

Background: Convolutional neural networks (CNN) have enabled significant progress in speech recognition, image classification, automotive software engineering, and neuroscience. This impressive progress is largely due to a combination of algorithmic breakthroughs, computation resource improvements, and access to a large amount of data. Method: In this paper, we focus on the automated detection of autism spectrum disorder (ASD) using CNN with a brain imaging dataset. We detected ASD patients using most common resting-state functional magnetic resonance imaging (fMRI) data from a multi-site dataset named the Autism Brain Imaging Exchange (ABIDE). The proposed approach was able to classify ASD and control subjects based on the patterns of functional connectivity. Results: Our experimental outcomes indicate that the proposed model is able to detect ASD correctly with an accuracy of 70.22% using the ABIDE I dataset and the CC400 functional parcellation atlas of the brain. Also, the CNN model developed used fewer parameters than the state-of-art techniques and is hence computationally less intensive. Our developed model is ready to be tested with more data and can be used to prescreen ASD patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa