Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Virol ; 98(6): e0052424, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38757972

RESUMO

Ebola virus glycoprotein (EBOV GP) is one of the most heavily O-glycosylated viral glycoproteins, yet we still lack a fundamental understanding of the structure of its large O-glycosylated mucin-like domain and to what degree the host O-glycosylation capacity influences EBOV replication. Using tandem mass spectrometry, we identified 47 O-glycosites on EBOV GP and found similar glycosylation signatures on virus-like particle- and cell lysate-derived GP. Furthermore, we performed quantitative differential O-glycoproteomics on proteins produced in wild-type HEK293 cells and cell lines ablated for the three key initiators of O-linked glycosylation, GalNAc-T1, -T2, and -T3. The data show that 12 out of the 47 O-glycosylated sites were regulated, predominantly by GalNAc-T1. Using the glycoengineered cell lines for authentic EBOV propagation, we demonstrate the importance of O-linked glycan initiation and elongation for the production of viral particles and the titers of progeny virus. The mapped O-glycan positions and structures allowed to generate molecular dynamics simulations probing the largely unknown spatial arrangements of the mucin-like domain. The data highlight targeting GALNT1 or C1GALT1C1 as a possible way to modulate O-glycan density on EBOV GP for novel vaccine designs and tailored intervention approaches.IMPORTANCEEbola virus glycoprotein acquires its extensive glycan shield in the host cell, where it is decorated with N-linked glycans and mucin-type O-linked glycans. The latter is initiated by a family of polypeptide GalNAc-transferases that have different preferences for optimal peptide substrates resulting in a spectrum of both very selective and redundant substrates for each isoform. In this work, we map the exact locations of O-glycans on Ebola virus glycoprotein and identify subsets of sites preferentially initiated by one of the three key isoforms of GalNAc-Ts, demonstrating that each enzyme contributes to the glycan shield integrity. We further show that altering host O-glycosylation capacity has detrimental effects on Ebola virus replication, with both isoform-specific initiation and elongation playing a role. The combined structural and functional data highlight glycoengineered cell lines as useful tools for investigating molecular mechanisms imposed by specific glycans and for steering the immune responses in future vaccine designs.


Assuntos
Ebolavirus , Polissacarídeos , Replicação Viral , Ebolavirus/fisiologia , Ebolavirus/metabolismo , Humanos , Células HEK293 , Glicosilação , Polissacarídeos/metabolismo , Proteínas do Envelope Viral/metabolismo , Doença pelo Vírus Ebola/virologia , Doença pelo Vírus Ebola/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , N-Acetilgalactosaminiltransferases/genética , Glicoproteínas/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
2.
J Virol ; 95(24): e0163821, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34613808

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a severe disease of humans caused by CCHF virus (CCHFV), a biosafety level (BSL)-4 pathogen. Ticks of the genus Hyalomma are the viral reservoir, and they represent the main vector transmitting the virus to its hosts during blood feeding. We have previously shown that CCHFV can persistently infect Hyalomma-derived tick cell lines. However, the mechanism allowing the establishment of persistent viral infections in ticks is still unknown. Hazara virus (HAZV) can be used as a BSL-2 model virus instead of CCHFV to study virus/vector interactions. To investigate the mechanism behind the establishment of a persistent infection, we developed an in vitro model with Hyalomma-derived tick cell lines and HAZV. As expected, HAZV, like CCHFV, persistently infects tick cells without any sign of cytopathic effect, and the infected cells can be cultured for more than 3 years. Most interestingly, we demonstrated the presence of short viral-derived DNA forms (vDNAs) after HAZV infection. Furthermore, we demonstrated that the antiretroviral drug azidothymine triphosphate could inhibit the production of vDNAs, suggesting that vDNAs are produced by an endogenous retrotranscriptase activity in tick cells. Moreover, we collected evidence that vDNAs are continuously synthesized, thereby downregulating viral replication to promote cell survival. Finally, vDNAs were also detected in CCHFV-infected tick cells. In conclusion, vDNA synthesis might represent a strategy to control the replication of RNA viruses in ticks allowing their persistent infection. IMPORTANCE Crimean-Congo hemorrhagic fever (CCHF) is an emerging tick-borne viral disease caused by CCHF virus (CCHFV). Ticks of the genus Hyalomma can be persistently infected with CCHFV representing the viral reservoir, and the main vector for viral transmission. Here we showed that tick cells infected with Hazara virus, a nonpathogenic model virus closely related to CCHFV, contained short viral-derived DNA forms (vDNAs) produced by endogenous retrotranscriptase activity. vDNAs are transitory molecules requiring viral RNA replication for their continuous synthesis. Interestingly, vDNA synthesis seemed to be correlated with downregulation of viral replication and promotion of tick cell viability. We also detected vDNAs in CCHFV-infected tick cells suggesting that they could represent a key element in the cell response to nairovirus infection and might represent a more general mechanism of innate immunity against RNA viral infection.


Assuntos
DNA Viral/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Nairovirus/genética , Carrapatos/virologia , Replicação Viral/genética , Animais , Linhagem Celular , DNA Viral/genética , Filogenia , RNA Viral/genética , Carrapatos/citologia
3.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500445

RESUMO

A-type proanthocyanidins (PAC-As) are plant-derived natural polyphenols that occur as oligomers or polymers of flavan-3-ol monomers, such as (+)-catechin and (-)-epicatechin, connected through an unusual double A linkage. PAC-As are present in leaves, seeds, flowers, bark, and fruits of many plants, and are thought to exert protective natural roles against microbial pathogens, insects, and herbivores. Consequently, when tested in isolation, PAC-As have shown several biological effects, through antioxidant, antibacterial, immunomodulatory, and antiviral activities. PAC-As have been observed in fact to inhibit replication of many different human viruses, and both enveloped and non-enveloped DNA and RNA viruses proved sensible to their inhibitory effect. Mechanistic studies revealed that PAC-As cause reduction of infectivity of viral particles they come in contact with, as a result of their propensity to interact with virion surface capsid proteins or envelope glycoproteins essential for viral attachment and entry. As viral infections and new virus outbreaks are a major public health concern, development of effective Broad-Spectrum Antiviral Agents (BSAAs) that can be rapidly deployable even against future emerging viruses is an urgent priority. This review summarizes the antiviral activities and mechanism of action of PAC-As, and their potential to be deployed as BSAAs against present and future viral infections.


Assuntos
Catequina , Proantocianidinas , Viroses , Vírus , Humanos , Proantocianidinas/farmacologia , Antivirais/farmacologia , Ligação Viral , Catequina/farmacologia
5.
New Microbiol ; 41(2): 162-164, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29498743

RESUMO

Ebola Virus Disease is one of the most lethal transmissible infections characterized by a high fatality rate. Several research studies have aimed to identify effective antiviral agents. Amiodarone, a drug used for the treatment of arrhythmias, has been shown to inhibit filovirus infection in vitro by acting at the early step of the viral replication cycle. Here we demonstrate that amiodarone reduces virus binding to target cells and slows down the progression of the viral particles along the endocytic pathway. Overall our data support the notion that amiodarone interferes with Ebola virus infection by affecting cellular pathways/ targets involved in the viral entry process.


Assuntos
Amiodarona/farmacologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Antiarrítmicos/farmacologia , Chlorocebus aethiops , Células HEK293 , Humanos , Células Vero
6.
New Microbiol ; 41(3): 232-234, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30028474

RESUMO

Listeriosis is a disease usually associated with the consumption of low-processed ready-to-eat food products contaminated by Listeria monocytogenes. In Italy, listeriosis has an incidence of 0.19-0.27 cases per 100000 persons. Since detailed information concerning the molecular characterization of listeriosis in the Italian Veneto region is currently lacking, we analyzed 36 L. monocytogenes clinical isolates collected between 2009 and 2014. Results show that the serotype 1/2a was the most represented among the tested samples. No antimicrobial resistance was detected in selected isolates representing the main pulsotypes.


Assuntos
Listeria monocytogenes/classificação , Listeriose/epidemiologia , Listeriose/microbiologia , Humanos , Itália/epidemiologia , Estudos Retrospectivos
7.
J Biol Chem ; 290(43): 25986-96, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26342080

RESUMO

The dNTP triphosphohydrolase SAMHD1 is a nuclear antiviral host restriction factor limiting HIV-1 infection in macrophages and a major regulator of dNTP concentrations in human cells. In normal human fibroblasts its expression increases during quiescence, contributing to the small dNTP pool sizes of these cells. Down-regulation of SAMHD1 by siRNA expands all four dNTP pools, with dGTP undergoing the largest relative increase. The deoxyguanosine released by SAMHD1 from dGTP can be phosphorylated inside mitochondria by deoxyguanosine kinase (dGK) or degraded in the cytosol by purine nucleoside phosphorylase. Genetic mutations of dGK cause mitochondrial (mt) DNA depletion in noncycling cells and hepato-cerebral mtDNA depletion syndrome in humans. We studied if SAMHD1 and dGK interact in the regulation of the dGTP pool during quiescence employing dGK-mutated skin fibroblasts derived from three unrelated patients. In the presence of SAMHD1 quiescent mutant fibroblasts manifested mt dNTP pool imbalance and mtDNA depletion. When SAMHD1 was silenced by siRNA transfection the composition of the mt dNTP pool approached that of the controls, and mtDNA copy number increased, compensating the depletion to various degrees in the different mutant fibroblasts. Chemical inhibition of purine nucleoside phosphorylase did not improve deoxyguanosine recycling by dGK in WT cells. We conclude that the activity of SAMHD1 contributes to the pathological phenotype of dGK deficiency. Our results prove the importance of SAMHD1 in the regulation of all dNTP pools and suggest that dGK inside mitochondria has the function of recycling the deoxyguanosine derived from endogenous dGTP degraded by SAMHD1 in the nucleus.


Assuntos
DNA Mitocondrial/genética , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Inativação Gênica , Humanos , Mitocôndrias/enzimologia , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Proteína 1 com Domínio SAM e Domínio HD
8.
J Clin Microbiol ; 54(10): 2521-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27466385

RESUMO

Rapid bedside inactivation of Ebola virus would be a solution for the safety of medical and technical staff, risk containment, sample transport, and high-throughput or rapid diagnostic testing during an outbreak. We show that the commercially available Magna Pure lysis/binding buffer used for nucleic acid extraction inactivates Ebola virus. A rapid bedside inactivation method for nucleic acid tests is obtained by simply adding Magna Pure lysis/binding buffer directly into vacuum blood collection EDTA tubes using a thin needle and syringe prior to sampling. The ready-to-use inactivation vacuum tubes are stable for more than 4 months, and Ebola virus RNA is preserved in the Magna Pure lysis/binding buffer for at least 5 weeks independent of the storage temperature. We also show that Ebola virus RNA can be manually extracted from Magna Pure lysis/binding buffer-inactivated samples using the QIAamp viral RNA minikit. We present an easy and convenient method for bedside inactivation using available blood collection vacuum tubes and reagents. We propose to use this simple method for fast, safe, and easy bedside inactivation of Ebola virus for safe transport and routine nucleic acid detection.


Assuntos
Desinfecção/métodos , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/virologia , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/isolamento & purificação , Manejo de Espécimes/métodos , Inativação de Vírus , Humanos , Temperatura , Fatores de Tempo
9.
J Virol ; 87(1): 692-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23077308

RESUMO

Ubiquitination/deubiquitination of key factors represent crucial steps in the biogenesis of multivesicular body (MVB) and sorting of transmembrane proteins. We and others previously demonstrated that MVB is involved in herpes simplex virus 1 (HSV-1) envelopment and budding. Here, we report that the HSV-1 large tegument protein, VP1/2, interacts with and regulates the ubiquitination of Tsg101, a cellular protein essential in MVB formation, thus identifying the first cellular substrate of a herpesviral deubiquitinating enzyme.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Herpesvirus Humano 1/patogenicidade , Interações Hospedeiro-Patógeno , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Humanos , Proteases Específicas de Ubiquitina
10.
New Microbiol ; 37(4): 557-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25387294

RESUMO

This paper reports the multilocus sequence typing (MLST) of 57 C. jejuni and C. coli isolates from humans and chickens in Italy and the identification of 17 new sequence types (STs). A high genetic diversity was detected among C. jejuni/C. coli and human/chicken isolates, with a predominance of clonal complexes CC21 and CC828. Although human STs were not the same as those found in chickens, 3 CCs overlapped between human and chicken isolates. Genotyping of Campylobacter strains by MLST should be encouraged in order to implement surveillance and con- trol of infection in humans and in animal reservoirs in Italy.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter coli/isolamento & purificação , Campylobacter jejuni/isolamento & purificação , Galinhas/microbiologia , Reservatórios de Doenças/microbiologia , Animais , Campylobacter coli/classificação , Campylobacter coli/genética , Campylobacter jejuni/classificação , Campylobacter jejuni/genética , Genótipo , Humanos , Itália , Tipagem de Sequências Multilocus
11.
Int J Parasitol ; 54(3-4): 147-156, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37806426

RESUMO

Tick species are vectors of harmful human and animal diseases, and their expansion is raising concerns under the global environmental changes' scenario. Ticks host and transmit bacteria, protozoa and viruses, making the understanding of host-pathogen molecular pathways critical to development of effective disease control strategies. Despite the considerable sizes and repeat contents of tick genomes, individual tick genomics is perhaps the most effective approach to reveal genotypic traits of interest. Presence-Absence gene Variations (PAVs) can contribute to individual differences within species, with dispensable genes carried by subsets of individuals possibly underpinning functional significance at individual or population-levels. We exploited 350 resequencing datasets of Dermacentor silvarum, Haemaphysalis longicornis, Ixodes persulcatus, Rhipicephalus microplus and Rhipicephalus sanguineus hard tick specimens to reveal the extension of PAV and the conservation of dispensable genes among individuals and, comparatively, between species. Overall, we traced 550-3,346 dispensable genes per species and were able to reconstruct 5.3-7 Mb of genomic regions not included in the respective reference genomes, as part of the tick pangenomes. Both dispensable genes and de novo predicted genes indicated that PAVs preferentially impacted mobile genetic elements in these tick species.


Assuntos
Ixodes , Ixodidae , Rhipicephalus , Animais , Humanos , Ixodidae/genética , Rhipicephalus/genética , Ixodes/genética
12.
J Mol Cell Biol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305139

RESUMO

The high mutation rate of SARS-CoV-2 leads to the emergence of multiple variants, some of which are resistant to vaccines and drugs targeting viral elements. Targeting host dependency factors, e.g. cellular proteins required for viral replication, would help prevent resistance. However, it remains unclear whether different SARS-CoV-2 variants induce conserved cellular responses and exploit the same core host factors. To this end, we compared three variants of concern and found that the host transcriptional response was conserved, differing only in kinetics and magnitude. Through CRISPR screening, we identified host genes required for infection by each variant. Most of the genes were shared by multiple variants. We validated our hits with small molecules and repurposed Food and Drug Administration-approved drugs. All the drugs were highly active against all the variants tested, including new variants that emerged during the study (Delta and Omicron). Mechanistically, we identified reactive oxygen species production as a key step in early virus replication. Antioxidants such as N-acetyl cysteine (NAC) were effective against all the variants in both human lung cells and a humanised mouse model. Our study supports the use of available antioxidant drugs, such as NAC, as a general and effective anti-COVID-19 approach.

13.
Nat Microbiol ; 9(6): 1499-1512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548922

RESUMO

Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.


Assuntos
Apolipoproteínas E , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Receptores de LDL , Internalização do Vírus , Animais , Humanos , Camundongos , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/virologia , Febre Hemorrágica da Crimeia/metabolismo , Camundongos Knockout , Receptores de LDL/metabolismo , Receptores de LDL/genética , Receptores Virais/metabolismo , Carrapatos/virologia , Carrapatos/metabolismo
14.
J Virol ; 86(12): 6688-700, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22514338

RESUMO

Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2(504) and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2(504) is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2(504) failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2(504) was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2(504) also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.


Assuntos
Gatos/metabolismo , Síndrome de Imunodeficiência Adquirida Felina/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Vírus da Imunodeficiência Felina/fisiologia , Proteínas do Envelope Viral/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Gatos/genética , Linhagem Celular , Síndrome de Imunodeficiência Adquirida Felina/genética , Síndrome de Imunodeficiência Adquirida Felina/virologia , Proteínas Ligadas por GPI/genética , Humanos , Vírus da Imunodeficiência Felina/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Alinhamento de Sequência , Proteínas do Envelope Viral/genética , Liberação de Vírus
15.
BMC Cancer ; 13: 4, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23282240

RESUMO

BACKGROUND: Cancer is a significant and growing problem worldwide. While this increase may, in part, be attributed to increasing longevity, improved case notifications and risk-enhancing lifestyle (such as smoking, diet and obesity), hygiene-related factors resulting in immuno-regulatory failure may also play a major role and call for a revision of vaccination strategies to protect against a range of cancers in addition to infections. DISCUSSION: Human endogenous retroviruses (HERVs) are a significant component of a wider family of retroelements that constitutes part of the human genome. They were originated by the integration of exogenous retroviruses into the human genome millions of years ago. HERVs are estimated to comprise about 8% of human DNA and are ubiquitous in somatic and germinal tissues.Physiologic and pathologic processes are influenced by some biologically active HERV families. HERV antigens are only expressed at low levels by the host, but in circumstances of inappropriate control their genes may initiate or maintain pathological processes. Although the precise mechanism leading to abnormal HERVs gene expression has yet to be clearly elucidated, environmental factors seem to be involved by influencing the human immune system.HERV-K expression has been detected in different types of tumors.Among the various human endogenous retroviral families, the K series was the latest acquired by the human species. Probably because of its relatively recent origin, the HERV-K is the most complete and biologically active family.The abnormal expression of HERV-K seemingly triggers pathological processes leading to melanoma onset, but also contributes to the morphological and functional cellular modifications implicated in melanoma maintenance and progression.The HERV-K-MEL antigen is encoded by a pseudo-gene incorporated in the HERV-K env-gene. HERV-K-MEL is significantly expressed in the majority of dysplastic and normal naevi, as well as other tumors like sarcoma, lymphoma, bladder and breast cancer. An amino acid sequence similar to HERV-K-MEL, recognized to cause a significant protective effect against melanoma, is shared by the antigenic determinants expressed by some vaccines such as BCG, vaccinia virus and the yellow fever virus.HERV-K are also reactivated in the majority of human breast cancers. Monoclonal and single-chain antibodies against the HERV-K Env protein recently proved capable of blocking the proliferation of human breast cancer cells in vitro, inhibiting tumor growth in mice bearing xenograft tumors. SUMMARY: A recent epidemiological study provided provisional evidence of how melanoma risk could possibly be reduced if the yellow fever virus vaccine (YFV) were received at least 10 years before, possibly preventing tumor initiation rather than culling melanoma cells already compromised. Further research is recommended to confirm the temporal pattern of this protection and eliminate/attenuate the potential role of relevant confounders as socio-economic status and other vaccinations.It appears also appropriate to examine the potential protective effect of YFV against other malignancies expressing high levels of HERV-K antigens, namely breast cancer, sarcoma, lymphoma and bladder cancer.Tumor immune-therapy, as described for the monoclonal antibodies against breast cancer, is indeed considered more complex and less advantageous than immune-prevention. Cellular immunity possibly triggered by vaccines as for YFV might also be involved in anti-cancer response, in addition to humoral immunity.


Assuntos
Retrovirus Endógenos/patogenicidade , Neoplasias/prevenção & controle , Infecções por Retroviridae/prevenção & controle , Vacinas Virais/uso terapêutico , Animais , Antígenos Virais/imunologia , Neoplasias da Mama/prevenção & controle , Neoplasias da Mama/virologia , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Retrovirus Endógenos/imunologia , Feminino , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Masculino , Melanoma/prevenção & controle , Melanoma/virologia , Neoplasias/epidemiologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/virologia , Neoplasias Ovarianas/prevenção & controle , Neoplasias Ovarianas/virologia , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/virologia , Fatores de Risco , Replicação Viral , Febre Amarela/prevenção & controle , Febre Amarela/virologia , Vacina contra Febre Amarela/uso terapêutico
16.
Pathogens ; 12(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36839483

RESUMO

The rapid rollout of COVID-19 vaccines in 2021 sparked general optimism toward controlling the severe form of the disease, preventing hospitalizations and COVID-19-associated mortality, and the transmissibility of SARS-CoV-2 infection [...].

17.
Nat Commun ; 14(1): 6785, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880247

RESUMO

Marburg and Ebola filoviruses are two of the deadliest infectious agents and several outbreaks have occurred in the last decades. Although several receptors and co-receptors have been reported for Ebola virus, key host factors remain to be elucidated. In this study, using a haploid cell screening platform, we identify the guanine nucleotide exchange factor CCZ1 as a key host factor in the early stage of filovirus replication. The critical role of CCZ1 for filovirus infections is validated in 3D primary human hepatocyte cultures and human blood-vessel organoids, both critical target sites for Ebola and Marburg virus tropism. Mechanistically, CCZ1 controls early to late endosomal trafficking of these viruses. In addition, we report that CCZ1 has a role in the endosomal trafficking of endocytosis-dependent SARS-CoV-2 infections, but not in infections by Lassa virus, which enters endo-lysosomal trafficking at the late endosome stage. Thus, we have identified an essential host pathway for filovirus infections in cell lines and engineered human target tissues. Inhibition of CCZ1 nearly completely abolishes Marburg and Ebola infections. Thus, targeting CCZ1 could potentially serve as a promising drug target for controlling infections caused by various viruses, such as SARS-CoV-2, Marburg, and Ebola.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Doença do Vírus de Marburg , Marburgvirus , Proteínas de Transporte Vesicular , Animais , Humanos , Ebolavirus/metabolismo , Lisossomos , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/metabolismo , Marburgvirus/metabolismo , Proteínas de Transporte Vesicular/metabolismo
18.
J Cell Physiol ; 227(7): 2965-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22261990

RESUMO

The 10th annual meeting of the Italian Society for Virology (SIV) comprised seven plenary sessions focused on: General virology and viral genetics; Virus-Host interaction and pathogenesis; Viral oncology; Emerging viruses and zoonotic, foodborne and environmental pathways of transmission; Viral immunology and vaccines; Medical virology and antiviral therapy; Viral biotechnologies and gene therapy. The meeting had an attendance of 143 virologists, about 60% were senior, and the other were young scientists. The submitted abstracts amounted to 88 and the abstracts selected for oral presentation were 41. Complete abstracts of oral and poster presentations are available at the web site www.siv-virologia.it. A summary of the plenary lectures and oral selected presentations is reported.


Assuntos
Virologia , Alergia e Imunologia , Animais , Antivirais , Biotecnologia , Terapia Genética , Genoma Viral , Humanos , Vírus Oncogênicos
19.
Acta Crystallogr D Struct Biol ; 78(Pt 3): 363-378, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234150

RESUMO

The SARS-CoV-2 main protease (Mpro) has a pivotal role in mediating viral genome replication and transcription of the coronavirus, making it a promising target for drugs against the COVID-19 pandemic. Here, a crystal structure is presented in which Mpro adopts an inactive state that has never been observed before, called new-inactive. It is shown that the oxyanion loop, which is involved in substrate recognition and enzymatic activity, adopts a new catalytically incompetent conformation and that many of the key interactions of the active conformation of the enzyme around the active site are lost. Solvation/desolvation energetic contributions play an important role in the transition from the inactive to the active state, with Phe140 moving from an exposed to a buried environment and Asn142 moving from a buried environment to an exposed environment. In new-inactive Mpro a new cavity is present near the S2' subsite, and the N-terminal and C-terminal tails, as well as the dimeric interface, are perturbed, with partial destabilization of the dimeric assembly. This novel conformation is relevant both for comprehension of the mechanism of action of Mpro within the catalytic cycle and for the successful structure-based drug design of antiviral drugs.


Assuntos
COVID-19/virologia , Proteases 3C de Coronavírus/química , SARS-CoV-2/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
20.
Front Immunol ; 13: 830710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173741

RESUMO

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) caused outbreaks of the pandemic starting from the end of 2019 and, despite ongoing vaccination campaigns, still influences health services and economic factors globally. Understanding immune protection elicited by natural infection is of critical importance for public health policy. This knowledge is instrumental to set scientific parameters for the release of "immunity pass" adopted with different criteria across Europe and other countries and to provide guidelines for the vaccination of COVID-19 recovered patients. Here, we characterized the humoral response triggered by SARS-CoV-2 natural infection by analyzing serum samples from 94 COVID-19 convalescent patients with three serological platforms, including live virus neutralization, pseudovirus neutralization, and ELISA. We found that neutralization potency varies greatly across individuals, is significantly higher in severe patients compared with mild ones, and correlates with both Spike and receptor-binding domain (RBD) recognition. We also show that RBD-targeting antibodies consistently represent only a modest proportion of Spike-specific IgG, suggesting broad specificity of the humoral response in naturally infected individuals. Collectively, this study contributes to the characterization of the humoral immune response in the context of natural SARS-CoV-2 infection, highlighting its variability in terms of neutralization activity, with implications for immune protection in COVID-19 recovered patients.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Domínios Proteicos/imunologia , SARS-CoV-2/imunologia , Adulto , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Linhagem Celular , Chlorocebus aethiops , Convalescença , Ensaio de Imunoadsorção Enzimática , Europa (Continente) , Feminino , Células HEK293 , Humanos , Imunidade Humoral/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa