Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 164(1-2): 91-102, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26709046

RESUMO

Eukaryotic ribosome biogenesis depends on several hundred assembly factors to produce functional 40S and 60S ribosomal subunits. The final phase of 60S subunit biogenesis is cytoplasmic maturation, which includes the proofreading of functional centers of the 60S subunit and the release of several ribosome biogenesis factors. We report the cryo-electron microscopy (cryo-EM) structure of the yeast 60S subunit in complex with the biogenesis factors Rei1, Arx1, and Alb1 at 3.4 Å resolution. In addition to the network of interactions formed by Alb1, the structure reveals a mechanism for ensuring the integrity of the ribosomal polypeptide exit tunnel. Arx1 probes the entire set of inner-ring proteins surrounding the tunnel exit, and the C terminus of Rei1 is deeply inserted into the ribosomal tunnel, where it forms specific contacts along almost its entire length. We provide genetic and biochemical evidence that failure to insert the C terminus of Rei1 precludes subsequent steps of 60S maturation.


Assuntos
Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Chaetomium/metabolismo , Microscopia Crioeletrônica , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Alinhamento de Sequência
2.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070225

RESUMO

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Parede Celular/metabolismo , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Peptidoglicano/química , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Quaternária de Proteína , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-20208148

RESUMO

In addition to the common use of glutaraldehyde to nonspecifically cross-link protein crystals through lysine residues disposed on the surface of the protein, the use of gentle vapour diffusion of glutaraldehyde offers a convenient way to limit polymerization and to allow slow diffusion throughout the crystal. In the case of trimeric barnase crystals, a specific cross-link was observed between an lysine side chain and an arginine side chain that were spatially disposed at the ideal distance on the protein surface in the three monomers. Here, the direct observation of a specific Lys-Arg cross-link site is reported and a mechanism is proposed for the reaction.


Assuntos
Bacillus/enzimologia , Reagentes de Ligações Cruzadas/química , Glutaral/química , Ribonucleases/química , Arginina/química , Proteínas de Bactérias , Cristalografia por Raios X , Lisina/química , Modelos Moleculares , Estrutura Terciária de Proteína
4.
Biochim Biophys Acta ; 1764(5): 903-12, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16600702

RESUMO

Structural data about the early step of protein denaturation were obtained from cross-linked crystals for two small proteins: barnase and lysozyme. Several denaturant agents like urea, bromoethanol or thiourea were used at increasing concentrations up to a limit leading to crystal disruption (>or=2 to 6 M). Before the complete destruction of the crystal order started, specific binding sites were observed at the protein surfaces, an indication that the preliminary step of denaturation is the disproportion of intermolecular polar bonds to the benefit of the agent "parasiting" the surface. The analysis of the thermal factors first agree with a stabilization effect at low or moderate concentration of denaturants rapidly followed by a destabilization at specific weak points when the number of sites increase (overflooding effect).


Assuntos
Muramidase/química , Ribonucleases/química , Ribonucleases/metabolismo , Animais , Bacillus/enzimologia , Proteínas de Bactérias , Galinhas , Reagentes de Ligações Cruzadas/química , Cristalização , Cristalografia por Raios X , Etanol/análogos & derivados , Muramidase/metabolismo , Fosforilação , Conformação Proteica , Desnaturação Proteica , Temperatura , Tioureia , Ureia
5.
J Mol Biol ; 363(2): 383-94, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16963083

RESUMO

Lipopolysaccharides constitute the outer leaflet of the outer membrane of Gram-negative bacteria and are therefore essential for cell growth and viability. The heptosyltransferase WaaC is a glycosyltransferase (GT) involved in the synthesis of the inner core region of LPS. It catalyzes the addition of the first L-glycero-D-manno-heptose (heptose) molecule to one 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residue of the Kdo2-lipid A molecule. Heptose is an essential component of the LPS core domain; its absence results in a truncated lipopolysaccharide associated with the deep-rough phenotype causing a greater susceptibility to antibiotic and an attenuated virulence for pathogenic Gram-negative bacteria. Thus, WaaC represents a promising target in antibacterial drug design. Here, we report the structure of WaaC from the Escherichia coli pathogenic strain RS218 alone at 1.9 A resolution, and in complex with either ADP or the non-cleavable analog ADP-2-deoxy-2-fluoro-heptose of the sugar donor at 2.4 A resolution. WaaC adopts the GT-B fold in two domains, characteristic of one glycosyltransferase structural superfamily. The comparison of the three different structures shows that WaaC does not undergo a domain rotation, characteristic of the GT-B family, upon substrate binding, but allows the substrate analog and the reaction product to adopt remarkably distinct conformations inside the active site. In addition, both binary complexes offer a close view of the donor subsite and, together with results from site-directed mutagenesis studies, provide evidence for a model of the catalytic mechanism.


Assuntos
Difosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Glicosiltransferases/química , Heptoses/química , Estrutura Terciária de Proteína , Difosfato de Adenosina/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Compostos de Flúor/química , Compostos de Flúor/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Heptoses/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa