Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 332(2): 525-30, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19903834

RESUMO

Chemosensory signaling by the tongue is a primary determinant of ingestive behavior and is mediated by specific interactions between tastant molecules and G protein-coupled and ion channel receptors. The functional relationship between tastant and receptor should be amenable to pharmacologic methods and manipulation. We have performed a pharmacologic characterization of the taste-directed licking of mice presented with solutions of capsaicin and other transient receptor potential vanilloid-1 (TRPV1) agonists using a brief access taste aversion assay. Dose-response functions for lick-rate suppression were established for capsaicin (EC(50) = 0.5 microM), piperine (EC(50) = 2 muM), and resiniferatoxin (EC(50) = 0.02 microM). Little or no effect on lick rate was observed in response to the full TRPV1 agonist olvanil. Capsaicin lick rates of wild-type and transient receptor potential melastatin-5 (TRPM5) knockout mice were equivalent, indicating that TRPM5, a critical component of aversive signaling for many bitter tastants, did not contribute to the capsaicin taste response. The selective TRPV1 antagonists N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (10 microM) and (E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide (AMG9810) (10 microM) effectively blocked capsaicin- and piperine-mediated lick suppression. However, (E)-3-(4-chlorophenyl)-N-(3-methoxyphenyl)-N-phenylprop-2-enamide (SB 366791) and capsazepine, also TRPV1 antagonists, were without effect at test concentrations of up to 30 and 100 microM, respectively. Our results demonstrate that TRPV1-mediated oral aversiveness presents a pharmacologic profile differing from what has been reported previously for TRPV1 pain signaling and, furthermore, that aversive tastes can be evaluated and controlled pharmacologically.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Capsaicina/antagonistas & inibidores , Capsaicina/farmacologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Paladar/efeitos dos fármacos , Acrilamidas/farmacologia , Administração Oral , Alcaloides , Anilidas/farmacologia , Animais , Benzodioxóis , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Capsaicina/administração & dosagem , Capsaicina/análogos & derivados , Cinamatos/farmacologia , Diterpenos/farmacologia , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperidinas , Alcamidas Poli-Insaturadas , Pirazinas/farmacologia , Piridinas/farmacologia , Canais de Cátion TRPM/genética
2.
Curr Opin Struct Biol ; 13(1): 115-21, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12581668

RESUMO

Recent studies report the application of isothermal titration calorimetry and differential scanning calorimetry to the study of protein-ligand interactions, allosteric cooperativity and aspects of protein folding. New methods of data analysis compare alternative methods for determining ligand binding enthalpy and analyze potential sources of error in the experimental measurement of other thermodynamic parameters. Several reports examine issues concerning drug design and the correlation of thermodynamic and X-ray structural data. New instruments allow volumetric effects in biochemical systems to be evaluated calorimetrically and to substantially expand the throughput of differential scanning calorimetry measurements in drug discovery and other high-throughput applications.


Assuntos
Calorimetria/instrumentação , Calorimetria/métodos , Proteínas/química , Varredura Diferencial de Calorimetria/instrumentação , Varredura Diferencial de Calorimetria/métodos , Desenho de Fármacos , Transferência de Energia , Entropia , Ligantes , Substâncias Macromoleculares , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Estrutura Terciária de Proteína , Temperatura
3.
Nat Rev Drug Discov ; 1(5): 337-46, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12120409

RESUMO

The multitude of potential drug targets emerging from genome sequencing demands new approaches to drug discovery. A chemogenomics strategy, which involves the generation of small-molecule compounds that can be used both as tools to probe biological mechanisms and as leads for drug-property optimization, provides a highly parallel, industrialized solution. Key to the success of this strategy is an integrated suite of chemi-informatics applications that can allow the rapid and directed optimization of chemical compounds with drug-like properties using 'just-in-time' combinatorial chemical synthesis. An effective embodiment of this process requires new computational and data-mining tools that cover all aspects of library generation, compound selection and experimental design, and work effectively on a massive scale.


Assuntos
Técnicas de Química Combinatória , Genômica , Projetos de Pesquisa
4.
Pharmacogenomics ; 4(3): 257-67, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12718717

RESUMO

Chemical genomics approaches are evolving to overcome key problems limiting the efficiency of drug discovery in the postgenomic era. Many of these stem from the low success rates in finding drugs for novel genomics targets whose biochemical properties and therapeutic relevance is poorly understood. The fundamental objective of chemical genomics is to find and optimize chemical compounds that can be used to directly test the therapeutic relevance of new targets revealed through genome sequencing. An integrated approach to chemical genomics encompasses a diverse set of tools including quantitative affinity-based screens, computer-directed combinatorial chemistry, and structure-based drug design. The approach is most effectively applied across targets classes whose members are structurally related, and where some members are known to have bona fide therapeutic relevance.


Assuntos
Química Farmacêutica/métodos , Química Farmacêutica/tendências , Desenho de Fármacos , Genômica/tendências , Técnicas de Química Combinatória , Sistemas de Liberação de Medicamentos , Humanos , Processos Estocásticos , Relação Estrutura-Atividade
5.
PLoS One ; 8(8): e72391, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951319

RESUMO

Taste quality and palatability are two of the most important properties measured in the evaluation of taste stimuli. Human panels can report both aspects, but are of limited experimental flexibility and throughput capacity. Relatively efficient animal models for taste evaluation have been developed, but each of them is designed to measure either taste quality or palatability as independent experimental endpoints. We present here a new apparatus and method for high throughput quantification of both taste quality and palatability using rats in an operant taste discrimination paradigm. Cohorts of four rats were trained in a modified operant chamber to sample taste stimuli by licking solutions from a 96-well plate that moved in a randomized pattern beneath the chamber floor. As a rat's tongue entered the well it disrupted a laser beam projecting across the top of the 96-well plate, consequently producing two retractable levers that operated a pellet dispenser. The taste of sucrose was associated with food reinforcement by presses on a sucrose-designated lever, whereas the taste of water and other basic tastes were associated with the alternative lever. Each disruption of the laser was counted as a lick. Using this procedure, rats were trained to discriminate 100 mM sucrose from water, quinine, citric acid, and NaCl with 90-100% accuracy. Palatability was determined by the number of licks per trial and, due to intermediate rates of licking for water, was quantifiable along the entire spectrum of appetitiveness to aversiveness. All 96 samples were evaluated within 90 minute test sessions with no evidence of desensitization or fatigue. The technology is capable of generating multiple concentration-response functions within a single session, is suitable for in vivo primary screening of tastant libraries, and potentially can be used to evaluate stimuli for any taste system.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Paladar/fisiologia , Animais , Aprendizagem por Discriminação , Masculino , Ratos , Reprodutibilidade dos Testes
7.
Behav Pharmacol ; 19(7): 673-82, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18797244

RESUMO

Many orally administered pharmaceuticals are regarded by humans as aversive, most often described as 'bitter'. Taste aversiveness often leads to patient noncompliance and reduced treatment effectiveness. 'Bitter' taste is mediated by T2R G-protein coupled receptors through a peripheral signaling pathway critically dependent upon function of the TRPM5 ion channel. The brief-access taste aversion (BATA) assay operationally defines aversive taste as suppression of the rate at which a rodent licks from sipper tubes that deliver tastant solutions or suspensions. We have used a mouse BATA assay for rapid quantification of oral aversiveness from a set of 20 active pharmaceutical ingredients (APIs). Robust lick-rate dose-response functions were obtained from both C57BL/6J wild type (WT) and C57BL/6J/TRPM5-/- (TRPM5 knockout) mouse strains, generating reliable determinations of potency and relative maximal oral aversiveness for each API. A subset of APIs was also evaluated in a human bitterness assessment test; effective concentrations for half-maximum responses (EC50s) from both the human test and WT mouse BATA were equivalent. Relative to WT potencies, EC50s from TRPM5 knockout mice were right-shifted more than 10-fold for most APIs. However, APIs were identified for which EC50s were essentially identical in both mouse strains, indicating a TRPM5-independent alternative aversive pathway. Our results suggest the BATA assay will facilitate formulation strategies and taste assessment of late development-phase APIs.


Assuntos
Aprendizagem da Esquiva/fisiologia , Medicamentos sem Prescrição , Medicamentos sob Prescrição , Canais de Cátion TRPM/genética , Paladar/genética , Animais , Relação Dose-Resposta a Droga , Método Duplo-Cego , Comportamento de Ingestão de Líquido/fisiologia , Feminino , Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade da Espécie , Limiar Gustativo/genética
8.
Biochemistry ; 44(13): 5258-66, 2005 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-15794662

RESUMO

ThermoFluor (a miniaturized high-throughput protein stability assay) was used to analyze the linkage between protein thermal stability and ligand binding. Equilibrium binding ligands increase protein thermal stability by an amount proportional to the concentration and affinity of the ligand. Binding constants (K(b)) were measured by examining the systematic effect of ligand concentration on protein stability. The precise ligand effects depend on the thermodynamics of protein stability: in particular, the unfolding enthalpy. An extension of current theoretical treatments was developed for tight binding inhibitors, where ligand effect on T(m) can also reveal binding stoichiometry. A thermodynamic analysis of carbonic anhydrase by differential scanning calorimetry (DSC) enabled a dissection of the Gibbs free energy of stability into enthalpic and entropic components. Under certain conditions, thermal stability increased by over 30 degrees C; the heat capacity of protein unfolding was estimated from the dependence of calorimetric enthalpy on T(m). The binding affinity of six sulfonamide inhibitors to two isozymes (human type 1 and bovine type 2) was analyzed by both ThermoFluor and isothermal titration calorimetry (ITC), resulting in a good correlation in the rank ordering of ligand affinity. This combined investigation by ThermoFluor, ITC, and DSC provides a detailed picture of the linkage between ligand binding and protein stability. The systematic effect of ligands on stability is shown to be a general tool to measure affinity.


Assuntos
Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Animais , Varredura Diferencial de Calorimetria , Anidrase Carbônica I/química , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/química , Bovinos , Estabilidade Enzimática , Humanos , Técnicas In Vitro , Cinética , Desnaturação Proteica , Espectrometria de Fluorescência , Termodinâmica
9.
J Biol Chem ; 280(12): 11704-12, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15634672

RESUMO

The protein product of an essential gene of unknown function from Streptococcus pneumoniae was expressed and purified for screening in the ThermoFluor affinity screening assay. This assay can detect ligand binding to proteins of unknown function. The recombinant protein was found to be in a dimeric, native-like folded state and to unfold cooperatively. ThermoFluor was used to screen the protein against a library of 3000 compounds that were specifically selected to provide information about possible biological functions. The results of this screen identified pyridoxal phosphate and pyridoxamine phosphate as equilibrium binding ligands (K(d) approximately 50 pM, K(d) approximately 2.5 microM, respectively), consistent with an enzymatic cofactor function. Several nucleotides and nucleotide sugars were also identified as ligands of this protein. Sequence comparison with two enzymes of known structure but relatively low overall sequence homology established that several key residues directly involved in pyridoxal phosphate binding were strictly conserved. Screening a collection of generic drugs and natural products identified the antifungal compound canescin A as an irreversible covalent modifier of the enzyme. Our investigation of this protein indicates that its probable biological role is that of a nucleoside diphospho-keto-sugar aminotransferase, although the preferred keto-sugar substrate remains unknown. These experiments demonstrate the utility of a generic affinity-based ligand binding technology in decrypting possible biological functions of a protein, an approach that is both independent of and complementary to existing genomic and proteomic technologies.


Assuntos
Proteínas de Bactérias/fisiologia , Genes Essenciais/fisiologia , Açúcares de Nucleosídeo Difosfato/metabolismo , Streptococcus pneumoniae/genética , Transaminases/fisiologia , Sequência de Aminoácidos , Benzopiranos/metabolismo , Dimerização , Furanos/metabolismo , Ligantes , Dados de Sequência Molecular , Fosfato de Piridoxal/metabolismo , Piridoxamina/metabolismo , Streptococcus pneumoniae/enzimologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa