Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 66(2): 137-145, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34644520

RESUMO

Bronchopulmonary dysplasia (BPD) is a debilitating disease in premature infants resulting from lung injury that disrupts alveolar and pulmonary vascular development. Despite the use of lung-protective ventilation and targeted oxygen therapy, BPD rates have not significantly changed over the last decade. Recent evidence suggests that sepsis and conditions initiating the systemic inflammatory response syndrome in preterm infants are key risk factors for BPD. However, the mechanisms by which sepsis-associated systemic inflammation and microbial dissemination program aberrant lung development are not fully understood. Progress has been made within the last 5 years with the inception of animal models allowing mechanistic investigations into neonatal acute lung injury and alveolar remodeling attributable to endotoxemia and necrotizing enterocolitis. These recent studies begin to unravel the pathophysiology of early endothelial immune activation via pattern recognition receptors such as Toll-like receptor 4 and disruption of critical lung developmental processes such as angiogenesis, extracellular matrix deposition, and ultimately alveologenesis. Here we review scientific evidence from preclinical models of neonatal sepsis-induced lung injury to new data emerging from clinical literature.


Assuntos
Displasia Broncopulmonar/etiologia , Doenças do Recém-Nascido/fisiopatologia , Doenças do Prematuro/fisiopatologia , Sepse/complicações , Síndrome de Resposta Inflamatória Sistêmica/complicações , Displasia Broncopulmonar/patologia , Humanos , Recém-Nascido , Recém-Nascido Prematuro
2.
Pediatr Res ; 91(6): 1405-1415, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33980990

RESUMO

BACKGROUND: Sepsis in premature newborns is a risk factor for bronchopulmonary dysplasia (BPD), but underlying mechanisms of lung injury remain unclear. Aberrant expression of endothelial cell (EC) angiopoietin 2 (ANGPT2) disrupts angiopoietin 1 (ANGPT1)/TIE2-mediated endothelial quiescence, and is implicated in sepsis-induced acute respiratory distress syndrome in adults. We hypothesized that recombinant ANGPT1 will mitigate sepsis-induced ANGPT2 expression, inflammation, acute lung injury (ALI), and alveolar remodeling in the saccular lung. METHODS: Effects of recombinant ANGPT1 on lipopolysaccharide (LPS)-induced endothelial inflammation were evaluated in human pulmonary microvascular endothelial cells (HPMEC). ALI and long-term alveolar remodeling were assessed in newborn mice exposed to intraperitoneal LPS and recombinant ANGPT1 pretreatment. RESULTS: LPS dephosphorylated EC TIE2 in association with increased ANGPT2 in vivo and in vitro. ANGPT1 suppressed LPS and ANGPT2-induced EC inflammation in HPMEC. Neonatal mice treated with LPS had increased lung cytokine expression, neutrophilic influx, and cellular apoptosis. ANGPT1 pre-treatment suppressed LPS-induced lung Toll-like receptor signaling, inflammation, and ALI. LPS-induced acute increases in metalloproteinase 9 expression and elastic fiber breaks, as well as a long-term decrease in radial alveolar counts, were mitigated by ANGPT1. CONCLUSIONS: In an experimental model of sepsis-induced BPD, ANGPT1 preserved endothelial quiescence, inhibited ALI, and suppressed alveolar simplification. IMPACT: Key message: Angiopoietin 1 inhibits LPS-induced neonatal lung injury and alveolar remodeling. Additions to existing literature: Demonstrates dysregulation of angiopoietin-TIE2 axis is important for sepsis- induced acute lung injury and alveolar simplification in experimental BPD. Establishes recombinant Angiopoietin 1 as an anti-inflammatory therapy in BPD. IMPACT: Angiopoietin 1-based interventions may represent novel therapies for mitigating sepsis-induced lung injury and BPD in premature infants.


Assuntos
Lesão Pulmonar Aguda , Displasia Broncopulmonar , Sepse , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/prevenção & controle , Angiopoietina-1/metabolismo , Angiopoietina-1/farmacologia , Angiopoietina-2/metabolismo , Angiopoietina-2/farmacologia , Animais , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/prevenção & controle , Células Endoteliais/metabolismo , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Humanos , Recém-Nascido , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos
3.
In Vivo ; 26(1): 9-18, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22210711

RESUMO

AIM: The effect of lung irradiation on reduction of lung stem cells and repopulation with bone marrow-derived cells was measured. MATERIALS AND METHODS: Expression of green fluorescent protein positive cells (GFP(+)) in the lungs of thoracic irradiated FVB/NHsd mice (Harlan Sprague Dawley, Indianapolis, IN, USA) was determined. This was compared to the repopulation of bone marrow-derived cells found in the lungs from naphthalene treated male FVB/NHsd mice and gangciclovir (GCV) treated FeVBN GFP(+) male marrow chimeric HSV-TK-CCSP. The level of mRNA for lung stem cell markers clara cell (CCSP), epithelium 1 (FOXJ1) and surfactant protein C (SP-C), and sorted single cells positive for marrow origin epithelial cells (GFP(+)CD45(-)) was measured. RESULTS: The expression of pulmonary stem cells as determined by PCR was reduced most by GCV, then naphthalene, and least by thoracic irradiation. Irradiation, like GCV, reduced mRNA expression of CCSP, CYP2F2, and FOXJ1, while naphthalene reduced that of CCSP and CYP2F2. Ultrastructural analysis showed GFP(+) pulmonary cells of bone marrow origin, with the highest frequency being found in GCV-treated groups. CONCLUSION: Bone marrow progenitor cells may not participate in the repopulation of the lung following irradiation.


Assuntos
Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Células Epiteliais/metabolismo , Pulmão/metabolismo , Animais , Antivirais/farmacologia , Células da Medula Óssea/ultraestrutura , Sistema Enzimático do Citocromo P-450/genética , Células Epiteliais/ultraestrutura , Feminino , Fatores de Transcrição Forkhead/genética , Ganciclovir/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/efeitos da radiação , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Naftalenos/farmacologia , Proteína C Associada a Surfactante Pulmonar/genética , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Uteroglobina/genética
4.
Radiat Res ; 174(3): 297-312, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20726721

RESUMO

The effect of deletion of the nitric oxide synthase 1 gene (NOS1(-/-)) on radiosensitivity was determined. In vitro, long-term cultures of bone marrow stromal cells derived from NOS1(-/-) were more radioresistant than cells from C57BL/6NHsd (wild-type), NOS2(-/-) or NOS3(-/-) mice. Mice from each strain received 20 Gy thoracic irradiation or 9.5 Gy total-body irradiation (TBI), and NOS1(-/-) mice were more sensitive to both. To determine the etiology of radiosensitivity, studies of histopathology, lower esophageal contractility, gastrointestinal transit, blood counts, electrolytes and inflammatory markers were performed; no significant differences between irradiated NOS1(-/-) and control mice were found. Video camera surveillance revealed the cause of death in NOS1(-/-) mice to be grand mal seizures; control mice died with fatigue and listlessness associated with low blood counts after TBI. NOS1(-/-) mice were not sensitive to brain-only irradiation. MnSOD-PL therapy delivered to the esophagus of wild-type and NOS1(-/-) mice resulted in equivalent biochemical levels in both; however, in NOS1(-/-) mice, MnSOD-PL significantly increased survival after both thoracic and total-body irradiation. The mechanism of radiosensitivity of NOS1(-/-) mice and its reversal by MnSOD-PL may be related to the developmental esophageal enteric neuronal innervation abnormalities described in these mice.


Assuntos
Esôfago/enzimologia , Lipossomos , Óxido Nítrico Sintase Tipo I/metabolismo , Plasmídeos , Superóxido Dismutase/genética , Animais , Células da Medula Óssea/efeitos da radiação , Estimulação Elétrica , Trânsito Gastrointestinal , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo I/genética , Radiografia Torácica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa