Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Bioessays ; 45(6): e2300026, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042115

RESUMO

Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals.


Assuntos
Metabolismo Basal , Animais , Humanos , Fenótipo
2.
Bioessays ; 43(4): e2000165, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33543487

RESUMO

It has been assumed that at the whole organismal level, the mitochondrial reactive oxygen species (ROS) production is proportional to the oxygen consumption. Recently, a number of researchers have challenged this assumption, based on the observation that the ROS production per unit oxygen consumed in the resting state of mitochondrial respiration is much higher than that in the active state. Here, we develop a simple model to investigate the validity of the assumption and the challenge of it. The model highlights the significance of the time budget that mitochondria operate in the different respiration states. The model suggests that under three physiologically possible conditions, the difference in ROS production per unit oxygen consumed between the respiration states does not upset the proportionality between the whole animal ROS production and oxygen consumption. The model also shows that mitochondrial uncoupling generally enhances the proportionality.


Assuntos
Mitocôndrias , Consumo de Oxigênio , Animais , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Biol Lett ; 17(2): 20200759, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33563134

RESUMO

Aerobic metabolism of aquatic ectotherms is highly sensitive to fluctuating climates. Many mitochondrial traits exhibit phenotypic plasticity in response to acute variations in temperature and oxygen availability. These responses are critical for understanding the effects of environmental variations on aquatic ectotherms' performance. Using the European seabass, Dicentrarchus labrax, we determined the effects of acute warming and deoxygenation in vitro on mitochondrial respiratory capacities and mitochondrial efficiency to produce ATP (ATP/O ratio). We show that acute warming reduced ATP/O ratio but deoxygenation marginally raised ATP/O ratio, leading to a compensatory effect of low oxygen availability on mitochondrial ATP/O ratio at high temperature. The acute effect of warming and deoxygenation on mitochondrial efficiency might be related to the leak of protons across the mitochondrial inner membrane, as the mitochondrial respiration required to counteract the proton leak increased with warming and decreased with deoxygenation. Our study underlines the importance of integrating the combined effects of temperature and oxygen availability on mitochondrial metabolism. Predictions on decline in performance of aquatic ectotherms owing to climate change may not be accurate, since these predictions typically look at respiratory capacity and ignore efficiency of ATP production.


Assuntos
Bass , Oxigênio , Animais , Mitocôndrias , Consumo de Oxigênio , Temperatura
4.
Proc Biol Sci ; 286(1909): 20191466, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31431161

RESUMO

The physiological causes of intraspecific differences in fitness components such as growth rate are currently a source of debate. It has been suggested that differences in energy metabolism may drive variation in growth, but it remains unclear whether covariation between growth rates and energy metabolism is: (i) a result of certain individuals acquiring and consequently allocating more resources to growth, and/or is (ii) determined by variation in the efficiency with which those resources are transformed into growth. Studies of individually housed animals under standardized nutritional conditions can help shed light on this debate. Here we quantify individual variation in metabolic efficiency in terms of the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by liver and muscle mitochondria and examine its effects, both on the rate of protein synthesis within these tissues and on the rate of whole-body growth of individually fed juvenile brown trout (Salmo trutta) receiving either a high or low food ration. As expected, fish on the high ration on average gained more in body mass and protein content than those maintained on the low ration. Yet, growth performance varied more than 10-fold among individuals on the same ration, resulting in some fish on low rations growing faster than others on the high ration. This variation in growth for a given ration was related to individual differences in mitochondrial properties: a high whole-body growth performance was associated with high mitochondrial efficiency of ATP production in the liver. Our results show for the first time, to our knowledge, that among-individual variation in the efficiency with which substrates are converted into ATP can help explain marked variation in growth performance, independent of food intake. This study highlights the existence of inter-individual differences in mitochondrial efficiency and its potential importance in explaining intraspecific variation in whole-animal performance.


Assuntos
Metabolismo Energético , Mitocôndrias/fisiologia , Truta/fisiologia , Trifosfato de Adenosina/metabolismo , Animais
5.
Ecol Lett ; 21(2): 287-295, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29243313

RESUMO

Organisms can modify their surrounding environment, but whether these changes are large enough to feed back and alter their evolutionary trajectories is not well understood, particularly in wild populations. Here we show that nutrient pulses from decomposing Atlantic salmon (Salmo salar) parents alter selection pressures on their offspring with important consequences for their phenotypic and genetic diversity. We found a strong survival advantage to larger eggs and faster juvenile metabolic rates in streams lacking carcasses but not in streams containing this parental nutrient input. Differences in selection intensities led to significant phenotypic divergence in these two traits among stream types. Stronger selection in streams with low parental nutrient input also decreased the number of surviving families compared to streams with high parental nutrient levels. Observed effects of parent-derived nutrients on selection pressures provide experimental evidence for key components of eco-evolutionary feedbacks in wild populations.


Assuntos
Evolução Biológica , Nutrientes , Salmão , Animais , Fenótipo , Seleção Genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-29223611

RESUMO

Metabolic rate has been linked to growth, reproduction, and survival at the individual level and is thought to have far reaching consequences for the ecology and evolution of organisms. However, metabolic rates must be consistent (i.e. repeatable) over at least some portion of the lifetime in order to predict their longer-term effects on population dynamics and how they will respond to selection. Previous studies demonstrate that metabolic rates are repeatable under constant conditions but potentially less so in more variable environments. We measured the standard (=minimum) metabolic rate, maximum metabolic rate, and aerobic scope (=interval between standard and maximum rates) in juvenile brown trout (Salmo trutta) after 5weeks acclimation to each of three consecutive test temperatures (10, 13, and then 16°C) that simulated the warming conditions experienced throughout their first summer of growth. We found that metabolic rates are repeatable over a period of months under changing thermal conditions: individual trout exhibited consistent differences in all three metabolic traits across increasing temperatures. Initial among-individual differences in metabolism are thus likely to have significant consequences for fitness-related traits over key periods of their life history.


Assuntos
Aclimatação , Metabolismo Energético , Temperatura , Truta/metabolismo , Animais , Tamanho Corporal , Ingestão de Alimentos , Reprodutibilidade dos Testes , Estações do Ano , Truta/crescimento & desenvolvimento , Truta/fisiologia
7.
J Exp Biol ; 219(Pt 9): 1356-62, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26944497

RESUMO

Animals, especially ectotherms, are highly sensitive to the temperature of their surrounding environment. Extremely high temperature, for example, induces a decline of average performance of conspecifics within a population, but individual heterogeneity in the ability to cope with elevating temperatures has rarely been studied. Here, we examined inter-individual variation in feeding ability and consequent growth rate of juvenile brown trout Salmo trutta acclimated to a high temperature (19°C), and investigated the relationship between these metrics of whole-animal performances and among-individual variation in mitochondrial respiration capacity. Food was provided ad libitum, yet intake varied ten-fold amongst individuals, resulting in some fish losing weight whilst others continued to grow. Almost half of the variation in food intake was related to variability in mitochondrial capacity: low intake (and hence growth failure) was associated with high leak respiration rates within liver and muscle mitochondria, and a lower coupling of muscle mitochondria. These observations, combined with the inability of fish with low food consumption to increase their intake despite ad libitum food levels, suggest a possible insufficient capacity of the mitochondria for maintaining ATP homeostasis. Individual variation in thermal performance is likely to confer variation in the upper limit of an organism's thermal niche and might affect the structure of wild populations in warming environments.


Assuntos
Aclimatação , Ingestão de Alimentos , Aquecimento Global , Mitocôndrias/metabolismo , Truta/crescimento & desenvolvimento , Animais , Respiração Celular , Temperatura Alta , Truta/fisiologia
8.
J Exp Biol ; 219(Pt 5): 631-4, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747898

RESUMO

Metabolic rate has been linked to several components of fitness and is both heritable and repeatable to a certain extent. However, its repeatability can differ among studies, even after controlling for the time interval between measurements. Some of this variation in repeatability might be due to the relative stability of the environmental conditions in which the animals are living between measurements. We compared published repeatability estimates for basal, resting and maximum metabolic rate from studies of endotherms living in the laboratory with those living in the wild during the interval between measurements. We found that repeatability declines over time, as demonstrated previously, but show for the first time that estimates from free-living animals are also considerably lower than those from animals living under more stable laboratory conditions.


Assuntos
Animais de Laboratório/metabolismo , Animais Selvagens/metabolismo , Metabolismo Basal/fisiologia , Metabolismo Energético/fisiologia , Animais , Aves/metabolismo , Mamíferos/metabolismo , Metanálise como Assunto , Reprodutibilidade dos Testes
9.
Biol Lett ; 12(10)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28120798

RESUMO

Metabolic rates reflect the energetic cost of living but exhibit remarkable variation among conspecifics, partly as a result of the constraints imposed by environmental conditions. Metabolic rates are sensitive to changes in temperature and oxygen availability, but effects of food availability, particularly on maximum metabolic rates, are not well understood. Here, we show in brown trout (Salmo trutta) that maximum metabolic rates are immutable but minimum metabolic rates increase as a positive function of food availability. As a result, aerobic scope (i.e. the capacity to elevate metabolism above baseline requirements) declines as food availability increases. These differential changes in metabolic rates likely have important consequences for how organisms partition available metabolic power to different functions under the constraints imposed by food availability.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Metabolismo Basal , Alimentos , Truta/metabolismo , Animais , Metabolismo Energético
10.
Oecologia ; 182(3): 703-12, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27461377

RESUMO

Energy stores are essential for the overwinter survival of many temperate and polar animals, but individuals within a species often differ in how quickly they deplete their reserves. These disparities in overwinter performance may be explained by differences in their physiological and behavioral flexibility in response to food scarcity. However, little is known about whether individuals exhibit correlated or independent changes in these traits, and how these phenotypic changes collectively affect their winter energy use. We examined individual flexibility in both standard metabolic rate and activity level in response to food scarcity and their combined consequences for depletion of lipid stores among overwintering brown trout (Salmo trutta). Metabolism and activity tended to decrease, yet individuals exhibited striking differences in their physiological and behavioral flexibility. The rate of lipid depletion was negatively related to decreases in both metabolic and activity rates, with the smallest lipid loss over the simulated winter period occurring in individuals that had the greatest reductions in metabolism and/or activity. However, changes in metabolism and activity were negatively correlated; those individuals that decreased their SMR to a greater extent tended to increase their activity rates, and vice versa, suggesting among-individual variation in strategies for coping with food scarcity.


Assuntos
Metabolismo Energético , Truta , Animais , Fenótipo , Estações do Ano
11.
Proc Biol Sci ; 282(1812): 20151028, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26203001

RESUMO

It is often assumed that an animal's metabolic rate can be estimated through measuring the whole-organism oxygen consumption rate. However, oxygen consumption alone is unlikely to be a sufficient marker of energy metabolism in many situations. This is due to the inherent variability in the link between oxidation and phosphorylation; that is, the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by mitochondria (P/O ratio). In this article, we describe how the P/O ratio can vary within and among individuals, and in response to a number of environmental parameters, including diet and temperature. As the P/O ratio affects the efficiency of cellular energy production, its variability may have significant consequences for animal performance, such as growth rate and reproductive output. We explore the adaptive significance of such variability and hypothesize that while a reduction in the P/O ratio is energetically costly, it may be associated with advantages in terms of somatic maintenance through reduced production of reactive oxygen species. Finally, we discuss how considering variation in mitochondrial efficiency, together with whole-organism oxygen consumption, can permit a better understanding of the relationship between energy metabolism and life history for studies in evolutionary ecology.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Consumo de Oxigênio , Animais , Evolução Biológica , Invertebrados/metabolismo , Vertebrados/metabolismo
12.
J Exp Biol ; 218(Pt 20): 3222-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26347565

RESUMO

Body size is a central biological parameter affecting most biological processes (especially energetics) and the mitochondrion is a key organelle controlling metabolism and is also the cell's main source of chemical energy. However, the link between body size and mitochondrial function is still unclear, especially in ectotherms. In this study, we investigated several parameters of mitochondrial bioenergetics in the liver of three closely related species of frog (the common frog Rana temporaria, the marsh frog Pelophylax ridibundus and the bull frog Lithobates catesbeiana). These particular species were chosen because of their differences in adult body mass. We found that mitochondrial coupling efficiency was markedly increased with animal size, which led to a higher ATP production (+70%) in the larger frogs (L. catesbeiana) compared with the smaller frogs (R. temporaria). This was essentially driven by a strong negative dependence of mitochondrial proton conductance on body mass. Liver mitochondria from the larger frogs (L. catesbeiana) displayed 50% of the proton conductance of mitochondria from the smaller frogs (R. temporaria). Contrary to our prediction, the low mitochondrial proton conductance measured in L. catesbeiana was not associated with higher reactive oxygen species production. Instead, liver mitochondria from the larger individuals produced significantly lower levels of radical oxygen species than those from the smaller frogs. Collectively, the data show that key bioenergetics parameters of mitochondria (proton leak, ATP production efficiency and radical oxygen species production) are correlated with body mass in frogs. This research expands our understanding of the relationship between mitochondrial function and the evolution of allometric scaling in ectotherms.


Assuntos
Peso Corporal/fisiologia , Mitocôndrias Hepáticas/metabolismo , Prótons , Ranidae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Metabolismo Energético , Mitocôndrias Hepáticas/química , Fosforilação Oxidativa
13.
J Anim Ecol ; 84(5): 1405-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25939669

RESUMO

1. Phenotypic flexibility in physiological, morphological and behavioural traits can allow organisms to cope with environmental challenges. Given recent climate change and the degree of habitat modification currently experienced by many organisms, it is therefore critical to quantify the degree of phenotypic variation present within populations, individual capacities to change and what their consequences are for fitness. 2. Flexibility in standard metabolic rate (SMR) may be particularly important since SMR reflects the minimal energetic cost of living and is one of the primary traits underlying organismal performance. SMR can increase or decrease in response to food availability, but the consequences of these changes for growth rates and other fitness components are not well known. 3. We examined individual variation in metabolic flexibility in response to changing food levels and its consequences for somatic growth in juvenile brown trout (Salmo trutta). 4. SMR increased when individuals were switched to a high food ration and decreased when they were switched to a low food regime. These shifts in SMR, in turn, were linked with individual differences in somatic growth; those individuals that increased their SMR more in response to elevated food levels grew fastest, while growth at the low food level was fastest in those individuals that depressed their SMR most. 5. Flexibility in energy metabolism is therefore a key mechanism to maximize growth rates under the challenges imposed by variability in food availability and is likely to be an important determinant of species' resilience in the face of global change.


Assuntos
Metabolismo Basal , Comportamento Alimentar , Truta/fisiologia , Animais , Truta/crescimento & desenvolvimento
14.
Biol Lett ; 11(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26556902

RESUMO

Links between metabolism and components of fitness such as growth, reproduction and survival can depend on food availability. A high standard metabolic rate (SMR; baseline energy expenditure) or aerobic scope (AS; the difference between an individual's maximum and SMR) is often beneficial when food is abundant or easily accessible but can be less important or even disadvantageous when food levels decline. While the mechanisms underlying these context-dependent associations are not well understood, they suggest that individuals with a higher SMR or AS are better able to take advantage of high food abundance. Here we show that juvenile brown trout (Salmo trutta) with a higher AS were able to consume more food per day relative to individuals with a lower AS. These results help explain why a high aerobic capacity can improve performance measures such as growth rate at high but not low levels of food availability.


Assuntos
Ingestão de Alimentos/fisiologia , Truta/fisiologia , Animais , Metabolismo Basal , Metabolismo Energético , Consumo de Oxigênio , Truta/crescimento & desenvolvimento
15.
Biol Lett ; 11(9): 20150538, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26382073

RESUMO

There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2.


Assuntos
Metabolismo Basal/fisiologia , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Truta/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo
16.
Environ Res ; 131: 104-10, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24713390

RESUMO

Phthalates are synthetic contaminants released into the environment notably by plastic waste. Semi-volatile, they adsorb to atmospheric particles and get distributed in all ecosystems. Effects of this major anthropogenic pollution in economical species in aquatic habitats have attracted large interest. On the contrary, very few studies have focused on wild terrestrial species. Yet, these lipophilic molecules are easily trapped by insect cuticle; ants and other insects have been shown to permanently bear among their cuticular components a non-negligible proportion of phthalates, meaning that they suffer from chronic exposure to these pollutants. Oral route could also be an additional way of contamination, as phthalates tend to stick to any organic particle. We show here via a food choice experiment that Lasius niger workers can detect, and avoid feeding on, food contaminated with DEHP (DiEthyl Hexyl Phthalate), the most widespread phthalate found in nature. This suggests that the main source of contamination for ants is atmosphere and that doses measured on the cuticle correspond to the chronic exposure levels for these animals. Such an ecologically relevant dose of DEHP was used to contaminate ants in lab and to investigate their physiological impact. Over a chronic exposure (1 dose per week for 5 weeks), the egg-laying rate of queens was significantly reduced lending credence to endocrine disruptive properties of such a pollutant, as also described for aquatic invertebrates. On the contrary, short term exposure (24h) to a single dose of DEHP does not induce oxidative stress in ant workers as expected, but leads to activation of the immune system. Because of their very large distribution, their presence in virtually all terrestrial ecosystems and their representation at all trophic levels, ants could be useful indicators of contamination by phthalates, especially via monitoring the level of activation of their immune state.


Assuntos
Formigas/efeitos dos fármacos , Dietilexilftalato/toxicidade , Poluentes Ambientais/toxicidade , Animais , Formigas/imunologia , Comportamento Alimentar/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Oviparidade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
17.
Acta Physiol (Oxf) ; : e14194, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924292

RESUMO

AIM: Thermal sensitivity of cellular metabolism is crucial for animal physiology and survival under climate change. Despite recent efforts, effects of multigenerational exposure to temperature on the metabolic functioning remain poorly understood. We aimed at determining whether multigenerational exposure to temperature modulate the mitochondrial respiratory response of Medaka fish. METHODS: We conducted a multigenerational exposure with Medaka fish reared multiple generations at 20 and 30°C (COLD and WARM fish, respectively). We then measured the oxygen consumption of tail muscle at two assay temperatures (20 and 30°C). Mitochondrial function was determined as the respiration supporting ATP synthesis (OXPHOS) and the respiration required to offset proton leak (LEAK(Omy)) in a full factorial design (COLD-20°C; COLD-30°C; WARM-20°C; WARM-30°C). RESULTS: We found that higher OXPHOS and LEAK fluxes at 30°C compared to 20°C assay temperature. At each assay temperature, WARM fish had lower tissue oxygen fluxes than COLD fish. Interestingly, we did not find significant differences in respiratory flux when mitochondria were assessed at the rearing temperature of the fish (i.e., COLD-20°C vs. WARM -30°C). CONCLUSION: The lower OXPHOS and LEAK capacities in warm fish are likely the result of the multigenerational exposure to warm temperature. This is consistent with a modulatory response of mitochondrial capacity to compensate for potential detrimental effects of warming on metabolism. Finally, the absence of significant differences in respiratory fluxes between COLD-20°C and WARM-30°C fish likely reflects an optimal respiration flux when organisms adapt to their thermal conditions.

18.
Philos Trans R Soc Lond B Biol Sci ; 379(1896): 20220483, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38186271

RESUMO

A fundamental issue in the metabolic field is whether it is possible to understand underlying mechanisms that characterize individual variation. Whole-animal performance relies on mitochondrial function as it produces energy for cellular processes. However, our lack of longitudinal measures to evaluate how mitochondrial function can change within and among individuals and with environmental context makes it difficult to assess individual variation in mitochondrial traits. The aims of this study were to test the repeatability of muscle mitochondrial metabolism by performing two biopsies of red muscle, and to evaluate the effects of biopsies on whole-animal performance in goldfish Carassius auratus. Our results show that basal mitochondrial respiration and net phosphorylation efficiency are repeatable at 14-day intervals. We also show that swimming performance (optimal cost of transport and critical swimming speed) was repeatable in biopsied fish, whereas the repeatability of individual oxygen consumption (standard and maximal metabolic rates) seemed unstable over time. However, we noted that the means of individual and mitochondrial traits did not change over time in biopsied fish. This study shows that muscle biopsies allow the measurement of mitochondrial metabolism without sacrificing animals and that two muscle biopsies 14 days apart affect the intraspecific variation in fish performance without affecting average performance of individuals. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.


Assuntos
Evolução Biológica , Natação , Animais , Mitocôndrias , Músculos , Consumo de Oxigênio
19.
Mar Environ Res ; 191: 106149, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37611374

RESUMO

In intertidal zones, species such as sessile shellfish exhibit extended phenotypic plasticity to face rapid environmental changes, but whether frequent exposure to intertidal limits of the distribution range impose physiological costs for the animal remains elusive. Here, we explored how phenotypic plasticity varied along foreshore range at multiple organization levels, from molecular to cellular and whole organism acclimatization, in the Pacific oyster (Crassostrea gigas). We exposed 7-month-old individuals for up to 16 months to three foreshore levels covering the vertical range for this species, representing 20, 50 and 80% of the time spent submerged monthly. Individuals at the upper range limit produced energy more efficiently, as seen by steeper metabolic reactive norms and unaltered ATP levels despite reduced mitochondrial density. By spending most of their time emerged, oysters mounted an antioxidant shielding concomitant with lower levels of pro-oxidant proteins and postponed age-related telomere attrition. Instead, individuals exposed at the lower limit range near subtidal conditions showed lower energy efficiencies, greater oxidative stress and shorter telomere length. These results unraveled the extended acclimatization strategies and the physiological costs of living too fast in subtidal conditions for an intertidal species.

20.
J Exp Biol ; 215(Pt 5): 863-9, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22323209

RESUMO

Mitochondria are known to play a central role in life history processes, being the main source of reactive oxygen species (ROS), which promote oxidative constraint. Surprisingly, although the main role of the mitochondria is to produce ATP, the plasticity of mitochondrial ATP generation has received little attention in life history studies. Yet, mitochondrial energy transduction represents the physiological link between environmental resources and energy allocated to animal performance. Studying both facets of mitochondrial functioning (ATP and ROS production) would allow better understanding of the proximate mechanisms underlying life history. We have experimentally modulated the mitochondrial capacity to generate ROS and ATP during larval development of Rana temporaria tadpoles, via chronic exposure (34 days) to a mitochondrial uncoupler (2,4-dinitrophenol, dNP). The aim was to better understand the impact of mitochondrial uncoupling on both responses in terms of oxidative balance, energy input (oxygen and feeding consumption) and energy output (growth and development of the tadpole). Exposure to 2,4-dNP reduced mitochondrial ROS generation, total antioxidant defences and oxidative damage in treated tadpoles compared with controls. Despite the beneficial effect of dNP on oxidative status, development and growth rates of treated tadpoles were lower than those in the control group. Treatment of tadpoles with 2,4-dNP promoted a mild mitochondrial uncoupling and enhanced metabolic rate. These tadpoles did not increase their food consumption, and thus failed to compensate for the energy loss elicited by the decrease in the efficiency of ATP production. These data suggest that the cost of ATP production, rather than the oxidative balance, is the parameter that constrains growth/development of tadpoles, highlighting the central role of energy transduction in larval performance.


Assuntos
Mitocôndrias/metabolismo , Rana temporaria/crescimento & desenvolvimento , Rana temporaria/metabolismo , Espécies Reativas de Oxigênio/metabolismo , 2,4-Dinitrofenol/metabolismo , Trifosfato de Adenosina , Proteínas de Anfíbios/metabolismo , Animais , Citocromos c/metabolismo , Metabolismo Energético , Ácido Láctico/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa