Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 8(7)2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336838

RESUMO

The presence of Candida albicans in the biofilm underlying the dental prosthesis is related to denture stomatitis (DS), an inflammatory reaction of the oral mucosa. The oral epithelium, a component of the innate immune response, has the ability to react to fungal invasion. In this study, we evaluated the in vitro effect of viable C. albicans on the apoptosis, nitric oxide (NO) production, and ß-defensin 2 (hBD-2) expression and production of human palate epithelial cells (HPECs). We further determined whether or not these effects were correlated with fungal invasion of epithelial cells. Interaction between HPEC primary culture and C. albicans was obtained through either direct or indirect cell-cell contact with a supernatant from a hyphal fungus. We found that the hyphae supernatants were sufficient to induce slight HPEC apoptosis, which occurred prior to the activation of the specific mechanisms of epithelial defense. The epithelial defense responses were found to occur via NO and antimicrobial peptide hBD-2 production only during direct contact between C. albicans and HPECs and coincided with the fungus's intraepithelial invasion. However, although the hBD-2 levels remained constant in the HPEC supernatants over time, the NO release and hBD-2 gene expression were reduced at a later time (10 h), indicating that the epithelial defense capacity against the fungal invasion was not maintained in later phases. This aspect of the immune response was associated with increased epithelial invasion and apoptosis maintenance.


Assuntos
Fibroblastos , Queratinócitos , Mucosa Bucal , Óxido Nítrico/metabolismo , Palato , beta-Defensinas/metabolismo , Biofilmes , Candida albicans/fisiologia , Candidíase/imunologia , Candidíase/microbiologia , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Queratinócitos/citologia , Queratinócitos/metabolismo , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo , Palato/citologia , Palato/metabolismo
2.
Int J Dent ; 2012: 134350, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23258978

RESUMO

The aim of this study was to compare the effect of toothpastes containing TiF(4), NaF, and SnF(2) on tooth erosion-abrasion. Bovine enamel and dentin specimens were distributed into 10 groups (n = 12): experimental placebo toothpaste (no F); NaF (1450 ppm F); TiF(4) (1450 ppm F); SnF(2) (1450 ppm F); SnF(2) (1100 ppm F) + NaF (350 ppm F); TiF(4) (1100 ppm F) + NaF (350 ppm F); commercial toothpaste Pro-Health (SnF(2)-1100 ppm F + NaF-350 ppm F, Oral B); commercial toothpaste Crest (NaF-1.500 ppm F, Procter & Gamble); abrasion without toothpaste and only erosion. The erosion was performed 4 × 90 s/day (Sprite Zero). The toothpastes' slurries were applied and the specimens abraded using an electric toothbrush 2 × 15 s/day. Between the erosive and abrasive challenges, the specimens remained in artificial saliva. After 7 days, the tooth wear was evaluated using contact profilometry (µm). The experimental toothpastes with NaF, TiF(4), SnF(2), and Pro-Health showed a significant reduction in enamel wear (between 42% and 54%). Pro-Health also significantly reduced the dentin wear. The toothpastes with SnF(2)/NaF and TiF(4)/NaF showed the best results in the reduction of enamel wear (62-70%) as well as TiF(4), SnF(2), SnF(2)/NaF, and TiF(4)/NaF for dentin wear (64-79%) (P < 0.05). Therefore, the experimental toothpastes containing both conventional and metal fluoride seem to be promising in reducing tooth wear.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa