Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Internet Res ; 25: e46396, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37725413

RESUMO

BACKGROUND: Acquired brain injuries (ABIs), such as stroke and traumatic brain injury, commonly cause cognitive-communication disorders, in which underlying cognitive difficulties also impair communication. As communication is an exchange with others, close others such as family and friends also experience the impact of cognitive-communication impairment. It is therefore an internationally recommended best practice for speech-language pathologists to provide communication support to both people with ABI and the people who communicate with them. Current research also identifies a need for neurorehabilitation professionals to support digital communication, such as social media use, after ABI. However, with >135 million people worldwide affected by ABI, alternate and supplementary service delivery models are needed to meet these communication needs. The "Social Brain Toolkit" is a novel suite of 3 interventions to deliver communication rehabilitation via the internet. However, digital health implementation is complex, and minimal guidance exists for ABI. OBJECTIVE: This study aimed to support the implementation of the Social Brain Toolkit by coproducing implementation knowledge with people with ABI, people who communicate with people with ABI, clinicians, and leaders in digital health implementation. METHODS: A maximum variation sample (N=35) of individuals with living experience of ABI, close others, clinicians, and digital health implementation leaders participated in an explanatory sequential mixed methods design. Stakeholders quantitatively prioritized 4 of the 7 theoretical domains of the Nonadoption, Abandonment, Scale-up, Spread, and Sustainability (NASSS) framework as being the most important for Social Brain Toolkit implementation. Qualitative interview and focus group data collection focused on these 4 domains. Data were deductively analyzed against the NASSS framework with stakeholder coauthors to determine implementation considerations and strategies. A collaborative autoethnography of the research was conducted. Interrelationships between considerations and strategies were identified through a post hoc network analysis. RESULTS: Across the 4 prioritized domains of "condition," "technology," "value proposition," and "adopters," 48 digital health implementation considerations and 52 tailored developer and clinician implementation strategies were generated. Benefits and challenges of coproduction were identified. The post hoc network analysis revealed 172 unique relationships between the identified implementation considerations and strategies, with user and persona testing and responsive design identified as the potentially most impactful strategies. CONCLUSIONS: People with ABI, close others, clinicians, and digital health leaders coproduced new knowledge of digital health implementation considerations for adults with ABI and the people who communicate with them, as well as tailored implementation strategies. Complexity-informed network analyses offered a data-driven method to identify the 2 most potentially impactful strategies. Although the study was limited by a focus on 4 NASSS domains and the underrepresentation of certain demographics, the wealth of actionable implementation knowledge produced supports future coproduction of implementation research with mutually beneficial outcomes for stakeholders and researchers. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/35080.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Adulto , Humanos , Encéfalo , Comunicação , Coleta de Dados
2.
Basic Res Cardiol ; 117(1): 53, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36326891

RESUMO

In heart failure, an increased abundance of post-translationally detyrosinated microtubules stiffens the cardiomyocyte and impedes its contractile function. Detyrosination promotes interactions between microtubules, desmin intermediate filaments, and the sarcomere to increase cytoskeletal stiffness, yet the mechanism by which this occurs is unknown. We hypothesized that detyrosination may regulate the growth and shrinkage of dynamic microtubules to facilitate interactions with desmin and the sarcomere. Through a combination of biochemical assays and direct observation of growing microtubule plus-ends in adult cardiomyocytes, we find that desmin is required to stabilize growing microtubules at the level of the sarcomere Z-disk, where desmin also rescues shrinking microtubules from continued depolymerization. Further, reducing detyrosination (i.e. tyrosination) below basal levels promotes frequent depolymerization and less efficient growth of microtubules. This is concomitant with tyrosination promoting the interaction of microtubules with the depolymerizing protein complex of end-binding protein 1 (EB1) and CAP-Gly domain-containing linker protein 1 (CLIP1/CLIP170). The dynamic growth and shrinkage of tyrosinated microtubules reduce their opportunity for stabilizing interactions at the Z-disk region, coincident with tyrosination globally reducing microtubule stability. These data provide a model for how intermediate filaments and tubulin detyrosination establish long-lived and physically reinforced microtubules that stiffen the cardiomyocyte and inform both the mechanism of action and therapeutic index for strategies aimed at restoring tyrosination for the treatment of cardiac disease.


Assuntos
Miócitos Cardíacos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Miócitos Cardíacos/metabolismo , Desmina/metabolismo , Filamentos Intermediários/metabolismo , Tirosina/metabolismo , Microtúbulos/metabolismo
3.
Circ Res ; 127(2): e14-e27, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32272864

RESUMO

RATIONALE: Impaired myocardial relaxation is an intractable feature of several heart failure (HF) causes. In human HF, detyrosinated microtubules stiffen cardiomyocytes and impair relaxation. Yet the identity of detyrosinating enzymes have remained ambiguous, hindering mechanistic study and therapeutic development. OBJECTIVE: We aimed to determine if the recently identified complex of VASH1/2 (vasohibin 1/2) and SVBP (small vasohibin binding protein) is an active detyrosinase in cardiomyocytes and if genetic inhibition of VASH-SVBP is sufficient to lower stiffness and improve contractility in HF. METHODS AND RESULTS: Transcriptional profiling revealed that VASH1 transcript is >10-fold more abundant than VASH2 in human hearts. Using short hairpin RNAs (shRNAs) against VASH1, VASH2, and SVBP, we showed that both VASH1- and VASH2-SVBP complexes function as tubulin carboxypeptidases in cardiomyocytes, with a predominant role for VASH1. We also generated a catalytically dead version of the tyrosinating enzyme TTL (TTL-E331Q) to separate the microtubule depolymerizing effects of TTL from its enzymatic activity. Assays of microtubule stability revealed that both TTL and TTL-E331Q depolymerize microtubules, while VASH1 and SVBP depletion reduce detyrosination independent of depolymerization. We next probed effects on human cardiomyocyte contractility. Contractile kinetics were slowed in HF, with dramatically slowed relaxation in cardiomyocytes from patients with HF with preserved ejection fraction. Knockdown of VASH1 conferred subtle kinetic improvements in nonfailing cardiomyocytes, while markedly improving kinetics in failing cardiomyocytes. Further, TTL, but not TTL-E331Q, robustly sped relaxation. Simultaneous measurements of calcium transients and contractility demonstrated that VASH1 depletion speeds kinetics independent from alterations to calcium cycling. Finally, atomic force microscopy confirmed that VASH1 depletion reduces the stiffness of failing human cardiomyocytes. CONCLUSIONS: VASH-SVBP complexes are active tubulin carboxypeptidases in cardiomyocytes. Inhibition of VASH1 or activation of TTL is sufficient to lower stiffness and speed relaxation in cardiomyocytes from patients with HF, supporting further pursuit of detyrosination as a therapeutic target for diastolic dysfunction.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Insuficiência Cardíaca/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Células HEK293 , Insuficiência Cardíaca/fisiopatologia , Humanos , Mutação , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley
4.
Biophys J ; 115(9): 1796-1807, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30322798

RESUMO

BACKGROUND: Microtubules (MTs) buckle and bear load during myocyte contraction, a behavior enhanced by post-translational detyrosination. This buckling suggests a spring-like resistance against myocyte shortening, which could store energy and aid myocyte relaxation. Despite this visual suggestion of elastic behavior, the precise mechanical contribution of the cardiac MT network remains to be defined. METHODS: Here we experimentally and computationally probe the mechanical contribution of stable MTs and their influence on myocyte function. We use multiple approaches to interrogate viscoelasticity and cell shortening in primary murine myocytes in which either MTs are depolymerized or detyrosination is suppressed and use the results to inform a mathematical model of myocyte viscoelasticity. RESULTS: MT ablation by colchicine concurrently enhances both the degree of shortening and speed of relaxation, a finding inconsistent with simple spring-like MT behavior and suggestive of a viscoelastic mechanism. Axial stretch and transverse indentation confirm that MTs increase myocyte viscoelasticity. Specifically, increasing the rate of strain amplifies the MT contribution to myocyte stiffness. Suppressing MT detyrosination with parthenolide or via overexpression of tubulin tyrosine ligase has mechanical consequences that closely resemble colchicine, suggesting that the mechanical impact of MTs relies on a detyrosination-dependent linkage with the myocyte cytoskeleton. Mathematical modeling affirms that alterations in cell shortening conferred by either MT destabilization or tyrosination can be attributed to internal changes in myocyte viscoelasticity. CONCLUSIONS: The results suggest that the cardiac MT network regulates contractile amplitudes and kinetics by acting as a cytoskeletal shock-absorber, whereby MTs provide breakable cross-links between the sarcomeric and nonsarcomeric cytoskeleton that resist rapid length changes during both shortening and stretch.


Assuntos
Movimento Celular , Elasticidade , Microtúbulos/metabolismo , Células Musculares/citologia , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Ratos , Viscosidade
5.
Gen Comp Endocrinol ; 260: 90-99, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29317212

RESUMO

The early stages of ovarian folliculogenesis generally progress independent of gonadotropins, whereas later stages require signaling initiated by FSH. In Siberian hamsters, cycles of folliculogenesis are mediated by changes in photoperiod which depress the hypothalamic pituitary gonadal axis. Reduced gonadotropins lead to decreases in mature follicle development and ovulation; however, early stages of folliculogenesis have not been explored in regressed ovaries. We hypothesized that intraovarian factors that contribute predominantly to later stages of folliculogenesis would react to changes in photoperiod, whereas factors contributing to earlier stages would not change. To probe if the early stages of folliculogenesis continue in the photoinhibited ovary while late stages decline, we measured the mRNA abundance of factors that interact with FSH signaling (Fshr, Igf1, Cox2) and factors that can function independently of FSH (c-Kit, Kitl, Foxo3, Figla, Nobox, Sohlh1, Lhx8). While plasma FSH, antral follicles, and corpora lutea numbers declined with exposure to inhibitory photoperiod, the numbers of primordial, primary, and secondary follicles did not change. Expression of factors that interact with FSH signaling changed with changes in photoperiod; however, expression of factors that do not interact with FSH were not significantly altered. These results suggest that the photoinhibited ovary is not completely quiescent, as factors important for follicle selection and early follicle growth are still expressed in regressed ovaries. Instead, the lack of gonadotropin support that characterizes the non-breeding season appears to inhibit only final stages of folliculogenesis in Siberian hamsters.


Assuntos
Anovulação/genética , Hormônio Foliculoestimulante/metabolismo , Folículo Ovariano/fisiologia , Ovulação/genética , Fotoperíodo , Transcriptoma , Animais , Anovulação/metabolismo , Cricetinae , Feminino , Hormônio Foliculoestimulante/genética , Perfilação da Expressão Gênica , Gonadotropinas/genética , Gonadotropinas/metabolismo , Luz , Folículo Ovariano/metabolismo , Folículo Ovariano/efeitos da radiação , Ovário/metabolismo , Ovário/efeitos da radiação , Ovulação/efeitos da radiação , Phodopus , RNA Mensageiro/genética , Receptores do FSH/genética , Receptores do FSH/metabolismo , Estações do Ano , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Fatores de Tempo , Transcriptoma/efeitos da radiação
6.
JMIR Res Protoc ; 11(1): e35080, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35006082

RESUMO

BACKGROUND: The Social Brain Toolkit, conceived and developed in partnership with stakeholders, is a novel suite of web-based communication interventions for people with brain injury and their communication partners. To support effective implementation, the developers of the Social Brain Toolkit have collaborated with people with brain injury, communication partners, clinicians, and individuals with digital health implementation experience to coproduce new implementation knowledge. In recognition of the equal value of experiential and academic knowledge, both types of knowledge are included in this study protocol, with input from stakeholder coauthors. OBJECTIVE: This study aims to collaborate with stakeholders to prioritize theoretically based implementation targets for the Social Brain Toolkit, understand the nature of these priorities, and develop targeted implementation strategies to address these priorities, in order to support the Social Brain Toolkit's implementation. METHODS: Theoretically underpinned by the Nonadoption, Abandonment, Scale-up, Spread, and Sustainability (NASSS) framework of digital health implementation, a maximum variation sample (N=35) of stakeholders coproduced knowledge of the implementation of the Social Brain Toolkit. People with brain injury (n=10), communication partners (n=11), and clinicians (n=5) participated in an initial web-based prioritization survey based on the NASSS framework. Survey completion was facilitated by plain English explanations and accessible captioned videos developed through 3 rounds of piloting. A speech-language pathologist also assisted stakeholders with brain injury to participate in the survey via video teleconference. Participants subsequently elaborated on their identified priorities via 7 web-based focus groups, in which researchers and stakeholders exchanged stakeholder perspectives and research evidence from a concurrent systematic review. Stakeholders were supported to engage in focus groups through the use of visual supports and plain English explanations. Additionally, individuals with experience in digital health implementation (n=9) responded to the prioritization survey questions via individual interview. The results will be deductively analyzed in relation to the NASSS framework in a coauthorship process with people with brain injury, communication partners, and clinicians. RESULTS: Ethical approval was received from the University of Technology Sydney Health and Medical Research Ethics Committee (ETH20-5466) on December 15, 2020. Data were collected from April 13 to November 18, 2021. Data analysis is currently underway, with results expected for publication in mid-2022. CONCLUSIONS: In this study, researchers supported individuals with living experience of acquired brain injury, of communicating with or clinically supporting someone post injury, and of digital health implementation, to directly access and leverage the latest implementation research evidence and theory. With this support, stakeholders were able to prioritize implementation research targets, develop targeted implementation solutions, and coauthor and publish new implementation findings. The results will be used to optimize the implementation of 3 real-world, evidence-based interventions and thus improve the outcomes of people with brain injury and their communication partners. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/35080.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa