RESUMO
An effective biological early warning system for the detection of water contamination should employ undemanding species that rapidly react to the presence of contaminants in their environment. The demonstrated reaction should be comprehensible and unambiguously evidential of the contamination event. This study utilized 96h post fertilization zebrafish larvae and tested their behavioral response to acute exposure to low concentrations of cadmium chloride (CdCl2) (5.0, 2.5, 1.25, 0.625mg/L) and permethrin (0.05, 0.029, 0.017, 0.01µg/L). We hypothesize that the number of larvae that show advanced trajectories in a group corresponds with water contamination, as the latter triggers avoidance behavior in the organisms. The proportion of advanced trajectories in the control and treated groups during the first minute of darkness was designated as a segregation parameter. It was parametrized and a threshold value was set using one CdCl2 trial and then applied to the remaining CdCl2 and permethrin replicates. For all cases, the method allowed distinguishing between the control and treated groups within two cycles of light: dark. The calculated parameter was statistically significantly different between the treated and control groups, except for the lowest CdCl2 concentration (0.625mg/L) in one replicate. This proof-of-concept study shows the potential of the proposed methodology for utilization as part of a multispecies biomonitoring system.
Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Bioensaio/métodos , Cloreto de Cádmio/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Biomarcadores , Cloreto de Cádmio/administração & dosagem , Cloreto de Cádmio/química , Relação Dose-Resposta a Droga , Monitoramento Ambiental , Larva/efeitos dos fármacos , Poluentes Químicos da Água/administração & dosagem , Poluentes Químicos da Água/químicaRESUMO
Water distribution system contamination events caused by intentional, negligent, or accidental intrusion of biological, chemical, or radioactive contaminants have significant impacts on the health of the populations that it services. Therefore, it is important to have an effective plan that can be readily implemented to minimize the impact of these contamination events. However, limited research has been focused on strategic planning of the decontamination process of the contaminated infrastructure. This paper proposed a framework for assembling a disinfection plan in real-time by (1) partitioning a WDS into a number of district metered areas (DMAs), (2) generating a solution region for each of the DMAs, and (3) assemble an effective decontamination plan using solution region generated. This framework has been applied to three contamination events. The results show that, when planning for the decontamination stage of a contamination event, the use of the proposed framework can (1) significantly reduce the response time, (2) improve the quality of the decontamination plan, and (3) provide a model for optimizing the resource allocation.
Assuntos
Desinfecção , Água , DescontaminaçãoRESUMO
In the past decades, bioassays and whole-organism bioassay have become important tools not only in compliance testing of industrial chemicals and plant protection products, but also in the monitoring of environmental quality. With few exceptions, such test systems are discontinuous. They require exposure of the biological test material in small units, such as multiwell plates, during prolonged incubation periods, and do not allow online read-outs. It is mostly due to these shortcomings that applications in continuous monitoring of, e.g., drinking or surface water quality are largely missing. We propose the use of pipetting robots that can be used to automatically exchange samples in multiwell plates with fresh samples in a semi-static manner, as a potential solution to overcome these limitations. In this study, we developed a simple and low-cost, versatile pipetting robot constructed partly using open-source hardware that has a small footprint and can be used for online monitoring of water quality by means of an automated whole-organism bioassay. We tested its precision in automated 2-fold dilution series and used it for exposure of zebrafish embryos (Danio rerio)-a common model species in ecotoxicology-to cadmium chloride and permethrin. We found that, compared to conventional static or semi-static exposure scenarios, effects of the two chemicals in zebrafish embryos generally occurred at lower concentrations, and analytically verified that the increased frequency of media exchange resulted in a greater availability of the chemical. In combination with advanced detection systems this custom-made pipetting robot has the potential to become a valuable tool in future monitoring strategies for drinking and surface water.