Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(1): e2310302121, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154066

RESUMO

Grain rotation is commonly observed during the evolution of microstructures in polycrystalline materials of different kinds, including metals, ceramics, and colloidal crystals. It is widely accepted that interface migration in these systems is mediated by the motion of line defects with step and dislocation character, i.e., disconnections. We propose a crystallography-respecting continuum model for arbitrarily curved grain boundaries or heterophase interfaces, accounting for the disconnections' role in grain rotation. Numerical simulations demonstrate that changes in grain orientations, as well as interface morphology and internal stress field, are associated with disconnection flow. Our predictions agree with molecular dynamics simulation results for pure capillarity-driven evolution of grain boundaries and are interpreted through an extended Cahn-Taylor model.

2.
Proc Natl Acad Sci U S A ; 121(24): e2320719121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38848299

RESUMO

We demonstrate that the complex spatiotemporal structure in active fluids can feature characteristics of hyperuniformity. Using a hydrodynamic model, we show that the transition from hyperuniformity to nonhyperuniformity and antihyperuniformity depends on the strength of active forcing and can be related to features of active turbulence without and with scaling characteristics of inertial turbulence. Combined with identified signatures of Levy walks and nonuniversal diffusion in these systems, this allows for a biological interpretation and the speculation of nonequilibrium hyperuniform states in active fluids as optimal states with respect to robustness and strategies of evasion and foraging.

3.
Opt Express ; 31(5): 9007-9017, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36860003

RESUMO

Dewetted, SiGe nanoparticles have been successfully exploited for light management in the visible and near-infrared, although their scattering properties have been so far only qualitatively studied. Here, we demonstrate that the Mie resonances sustained by a SiGe-based nanoantenna under tilted illumination, can generate radiation patterns in different directions. We introduce a novel dark-field microscopy setup that exploits the movement of the nanoantenna under the objective lens to spectrally isolate Mie resonances contribution to the total scattering cross-section during the same measurement. The knowledge of islands' aspect ratio is then benchmarked by 3D, anisotropic phase-field simulations and contributes to a correct interpretation of the experimental data.

4.
Phys Rev Lett ; 126(18): 185502, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018767

RESUMO

The velocity of dislocations is derived analytically to incorporate and predict the intriguing effects induced by the preferential solute segregation and Cottrell atmospheres in both two-dimensional and three-dimensional binary systems of various crystalline symmetries. The corresponding mesoscopic description of defect dynamics is constructed through the amplitude formulation of the phase-field crystal model, which has been shown to accurately capture elasticity and plasticity in a wide variety of systems. Modifications of the Peach-Koehler force as a result of solute concentration variations and compositional stresses are presented, leading to interesting new predictions of defect motion due to effects of Cottrell atmospheres. These include the deflection of dislocation glide paths, the variation of climb speed and direction, and the change or prevention of defect annihilation, all of which play an important role in determining the fundamental behaviors of complex defect network and dynamics. The analytic results are verified by numerical simulations.

5.
Phys Rev Lett ; 125(12): 126101, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33016725

RESUMO

Materials featuring anomalous suppression of density fluctuations over large length scales are emerging systems known as disordered hyperuniform. The underlying hidden order renders them appealing for several applications, such as light management and topologically protected electronic states. These applications require scalable fabrication, which is hard to achieve with available top-down approaches. Theoretically, it is known that spinodal decomposition can lead to disordered hyperuniform architectures. Spontaneous formation of stable patterns could thus be a viable path for the bottom-up fabrication of these materials. Here, we show that monocrystalline semiconductor-based structures, in particular Si_{1-x}Ge_{x} layers deposited on silicon-on-insulator substrates, can undergo spinodal solid-state dewetting featuring correlated disorder with an effective hyperuniform character. Nano- to micrometric sized structures targeting specific morphologies and hyperuniform character can be obtained, proving the generality of the approach and paving the way for technological applications of disordered hyperuniform metamaterials. Phase-field simulations explain the underlying nonlinear dynamics and the physical origin of the emerging patterns.

6.
Nano Lett ; 15(6): 3677-83, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25942628

RESUMO

We present the fabrication of axial InAs/GaAs nanowire heterostructures on silicon with atomically sharp interfaces by molecular beam epitaxy. Our method exploits the crystallization at low temperature, by As supply, of In droplets deposited on the top of GaAs NWs grown by the self-assisted (self-catalyzed) mode. Extensive characterization based on transmission electron microscopy sets an upper limit for the InAs/GaAs interface thickness within few bilayers (≤1.5 nm). A detailed study of elastic/plastic strain relaxation at the interface is also presented, highlighting the role of nanowire lateral free surfaces.

7.
Sci Rep ; 11(1): 18825, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552147

RESUMO

The development of three-dimensional architectures in semiconductor technology is paving the way to new device concepts for various applications, from quantum computing to single photon avalanche detectors. In most cases, such structures are achievable only under far-from-equilibrium growth conditions. Controlling the shape and morphology of the growing structures, to meet the strict requirements for an application, is far more complex than in close-to-equilibrium cases. The development of predictive simulation tools can be essential to guide the experiments. A versatile phase-field model for kinetic crystal growth is presented and applied to the prototypical case of Ge/Si vertical microcrystals grown on deeply patterned Si substrates. These structures, under development for innovative optoelectronic applications, are characterized by a complex three-dimensional set of facets essentially driven by facet competition. First, the parameters describing the kinetics on the surface of Si and Ge are fitted on a small set of experimental results. To this goal, Si vertical microcrystals have been grown, while for Ge the fitting parameters have been obtained from data from the literature. Once calibrated, the predictive capabilities of the model are demonstrated and exploited for investigating new pattern geometries and crystal morphologies, offering a guideline for the design of new 3D heterostructures. The reported methodology is intended to be a general approach for investigating faceted growth under far-from-equilibrium conditions.

8.
ACS Appl Mater Interfaces ; 13(31): 37761-37774, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34320811

RESUMO

Fabrication and scaling of disordered hyperuniform materials remain hampered by the difficulties in controlling the spontaneous phenomena leading to this novel kind of exotic arrangement of objects. Here, we demonstrate a hybrid top-down/bottom-up approach based on sol-gel dip-coating and nanoimprint lithography for the faithful reproduction of disordered hyperuniform metasurfaces in metal oxides. Nano- to microstructures made of silica and titania can be directly printed over several cm2 on glass and on silicon substrates. First, we describe the polymer mold fabrication starting from a hard master obtained via spontaneous solid-state dewetting of SiGe and Ge thin layers on SiO2. Then, we assess the effective disordered hyperuniform character of master and replica and the role of the thickness of the sol-gel layer on the metal oxide replicas and on the presence of a residual layer underneath. Finally, as a potential application, we show the antireflective character of titania structures on silicon. Our results are relevant for the realistic implementation over large scales of disordered hyperuniform nano- and microarchitectures made of metal oxides, thus opening their exploitation in the framework of wet chemical assembly.

9.
Cryst Growth Des ; 20(5): 2914-2920, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33828439

RESUMO

We present an experimental and theoretical analysis of the formation of nanovoids within Si microcrystals epitaxially grown on Si patterned substrates. The growth conditions leading to the nucleation of nanovoids have been highlighted, and the roles played by the deposition rate, substrate temperature, and substrate pattern geometry are identified. By combining various scanning and transmission electron microscopy techniques, it has been possible to link the appearance pits of a few hundred nanometer width at the microcrystal surface with the formation of nanovoids within the crystal volume. A phase-field model, including surface diffusion and the flux of incoming material with shadowing effects, reproduces the qualitative features of the nanovoid formation thereby opening new perspectives for the bottom-up fabrication of 3D semiconductors microstructures.

10.
Nat Commun ; 10(1): 5632, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822679

RESUMO

Large-scale, defect-free, micro- and nano-circuits with controlled inter-connections represent the nexus between electronic and photonic components. However, their fabrication over large scales often requires demanding procedures that are hardly scalable. Here we synthesize arrays of parallel ultra-long (up to 0.75 mm), monocrystalline, silicon-based nano-wires and complex, connected circuits exploiting low-resolution etching and annealing of thin silicon films on insulator. Phase field simulations reveal that crystal faceting and stabilization of the wires against breaking is due to surface energy anisotropy. Wires splitting, inter-connections and direction are independently managed by engineering the dewetting fronts and exploiting the spontaneous formation of kinks. Finally, we fabricate field-effect transistors with state-of-the-art trans-conductance and electron mobility. Beyond the first experimental evidence of controlled dewetting of patches featuring a record aspect ratio of [Formula: see text]1/60000 and self-assembled [Formula: see text]mm long nano-wires, our method constitutes a distinct and promising approach for the deterministic implementation of atomically-smooth, mono-crystalline electronic and photonic circuits.

11.
Nanoscale Res Lett ; 12(1): 554, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963645

RESUMO

Lateral ordering of heteroepitaxial islands can be conveniently achieved by suitable pit-patterning of the substrate prior to deposition. Controlling shape, orientation, and size of the pits is not trivial as, being metastable, they can significantly evolve during deposition/annealing. In this paper, we exploit a continuum model to explore the typical metastable pit morphologies that can be expected on Si(001), depending on the initial depth/shape. Evolution is predicted using a surface-diffusion model, formulated in a phase-field framework, and tackling surface-energy anisotropy. Results are shown to nicely reproduce typical metastable shapes reported in the literature. Moreover, long time scale evolutions of pit profiles with different depths are found to follow a similar kinetic pathway. The model is also exploited to treat the case of heteroepitaxial growth involving two materials characterized by different facets in their equilibrium Wulff's shape. This can lead to significant changes in morphologies, such as a rotation of the pit during deposition as evidenced in Ge/Si experiments.

12.
Phys Rev E ; 96(2-1): 023301, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950454

RESUMO

One of the major difficulties in employing phase-field crystal (PFC) modeling and the associated amplitude (APFC) formulation is the ability to tune model parameters to match experimental quantities. In this work, we address the problem of tuning the defect core and interface energies in the APFC formulation. We show that the addition of a single term to the free-energy functional can be used to increase the solid-liquid interface and defect energies in a well-controlled fashion, without any major change to other features. The influence of the newly added term is explored in two-dimensional triangular and honeycomb structures as well as bcc and fcc lattices in three dimensions. In addition, a finite-element method (FEM) is developed for the model that incorporates a mesh refinement scheme. The combination of the FEM and mesh refinement to simulate amplitude expansion with a new energy term provides a method of controlling microscopic features such as defect and interface energies while simultaneously delivering a coarse-grained examination of the system.

13.
Sci Adv ; 3(11): eaao1472, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29296680

RESUMO

Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoarchitectures of monocrystalline silicon on insulator with unprecedented precision and reproducibility over large scales. Phase-field simulations reveal the dominant role of surface diffusion as a driving force for dewetting and provide a predictive tool to further engineer this hybrid top-down/bottom-up self-assembly method. Our results demonstrate that patches of thin monocrystalline films of metals and semiconductors share the same dewetting dynamics. We also prove the potential of our method by fabricating nanotransfer molding of metal oxide xerogels on silicon and glass substrates. This method allows the novel possibility of transferring these Si-based patterns on different materials, which do not usually undergo dewetting, offering great potential also for microfluidic or sensing applications.

14.
ACS Appl Mater Interfaces ; 8(39): 26374-26380, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27603117

RESUMO

In this work, we demonstrate the growth of Ge crystals and suspended continuous layers on Si(001) substrates deeply patterned in high aspect-ratio pillars. The material deposition was carried out in a commercial reduced-pressure chemical vapor deposition reactor, thus extending the "vertical-heteroepitaxy" technique developed by using the peculiar low-energy plasma-enhanced chemical vapor deposition reactor, to widely available epitaxial tools. The growth process was thoroughly analyzed, from the formation of small initial seeds to the final coalescence into a continuous suspended layer, by means of scanning and transmission electron microscopy, X-ray diffraction, and µ-Raman spectroscopy. The preoxidation of the Si pillar sidewalls and the addition of hydrochloric gas in the reactants proved to be key to achieve highly selective Ge growth on the pillars top only, which, in turn, is needed to promote the formation of a continuous Ge layer. Thanks to continuum growth models, we were able to single out the different roles played by thermodynamics and kinetics in the deposition dynamics. We believe that our findings will open the way to the low-cost realization of tens of micrometers thick heteroepitaxial layer (e.g., Ge, SiC, and GaAs) on Si having high crystal quality.

15.
Adv Mater ; 28(5): 884-8, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26829168

RESUMO

Defect-free mismatched heterostructures on Si substrates are produced by an innovative strategy. The strain relaxation is engineered to occur elastically rather than plastically by combining suitable substrate patterning and vertical crystal growth with compositional grading. Its validity is proven both experimentally and theoretically for the pivotal case of SiGe/Si(001).

16.
ACS Appl Mater Interfaces ; 8(3): 2017-26, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26709534

RESUMO

Dislocation networks are one of the most principle sources deteriorating the performances of devices based on lattice-mismatched heteroepitaxial systems. We demonstrate here a technique enabling fully coherent germanium (Ge) islands selectively grown on nanotip-patterned Si(001) substrates. The silicon (Si)-tip-patterned substrate, fabricated by complementary metal oxide semiconductor compatible nanotechnology, features ∼50-nm-wide Si areas emerging from a SiO2 matrix and arranged in an ordered lattice. Molecular beam epitaxy growths result in Ge nanoislands with high selectivity and having homogeneous shape and size. The ∼850 °C growth temperature required for ensuring selective growth has been shown to lead to the formation of Ge islands of high crystalline quality without extensive Si intermixing (with 91 atom % Ge). Nanotip-patterned wafers result in geometric, kinetic-diffusion-barrier intermixing hindrance, confining the major intermixing to the pedestal region of Ge islands, where kinetic diffusion barriers are, however, high. Theoretical calculations suggest that the thin Si/Ge layer at the interface plays, nevertheless, a significant role in realizing our fully coherent Ge nanoislands free from extended defects especially dislocations. Single-layer graphene/Ge/Si-tip Schottky junctions were fabricated, and thanks to the absence of extended defects in Ge islands, they demonstrate high-performance photodetection characteristics with responsivity of ∼45 mA W(-1) and an Ion/Ioff ratio of ∼10(3).

17.
ACS Appl Mater Interfaces ; 7(34): 19219-25, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26252761

RESUMO

The move from dimensional to functional scaling in microelectronics has led to renewed interest toward integration of Ge on Si. In this work, simulation-driven experiments leading to high-quality suspended Ge films on Si pillars are reported. Starting from an array of micrometric Ge crystals, the film is obtained by exploiting their temperature-driven coalescence across nanometric gaps. The merging process is simulated by means of a suitable surface-diffusion model within a phase-field approach. The successful comparison between experimental and simulated data demonstrates that the morphological evolution is driven purely by the lowering of surface-curvature gradients. This allows for fine control over the final morphology to be attained. At fixed annealing time and temperature, perfectly merged films are obtained from Ge crystals grown at low temperature (450 °C), whereas some void regions still persist for crystals grown at higher temperature (500 °C) due to their different initial morphology. The latter condition, however, looks very promising for possible applications. Indeed, scanning tunneling electron microscopy and high-resolution transmission electron microscopy analyses show that, at least during the first stages of merging, the developing film is free from threading dislocations. The present findings, thus, introduce a promising path to integrate Ge layers on Si with a low dislocation density.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa