Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Metab Brain Dis ; 32(6): 2149-2154, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28868593

RESUMO

Sengers syndrome is a rare autosomal recessive metabolic disorder caused by lack of acylglycerol kinase due to mutations in the AGK gene. It is characterized by congenital cataract, hypertrophic cardiomyopathy, myopathy and lactic acidosis. Two clinical forms have been described: a severe neonatal form, and a more benign form displaying exercise intolerance. We describe two siblings with congenital cataract, cardiomyopathy, hypotonia, intellectual disability and lactic acidosis. Whole exome sequencing revealed a homozygous c.1035dup mutation in the two siblings, supporting a diagnosis of Sengers syndrome. Our patients presented an intermediate form with intellectual deficiency, an unusual feature in Sengers syndrome. This permitted a prenatal diagnosis for a following pregnancy.


Assuntos
Cardiomiopatias/genética , Catarata/genética , Deficiência Intelectual/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Criança , Pré-Escolar , Humanos , Masculino , Fenótipo , Irmãos
4.
Mol Genet Genomic Med ; 7(9): e914, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31368241

RESUMO

INTRODUCTION: RNA polymerase III (Pol III)-related leukodystrophies are a group of autosomal recessive neurodegenerative disorders caused by mutations in POLR3A and POLR3B. Recently a recessive mutation in POLR1C causative of Pol III-related leukodystrophies was identified. METHODS: We report the case of a Tunisian girl of 14 years of age who was referred to our department for evaluation of progressive ataxia that began at the age of 5. Genetic diagnosis was performed by NGS and Sanger analysis. In silico predictions were performed using SIFT, PolyPhen-2, and Mutation Taster. RESULTS: Neurological examination showed cerebellar and tetrapyramidal syndrome, mixed movement disorders with generalized dystonia and severe myoclonus leading to death at 25 years. Brain MRI scans showed diffuse hypomyelination associated with cerebellar atrophy. It also showed bilateral T2 hypointensity of the ventrolateral thalamus, part of the posterior limb of the internal capsule, the substantia nigra and the subthalamic nucleus. Next generation sequencing leukodystrophy panel including POLR3A and POLR3B was negative. Sanger sequencing of the coding regions of POLR1C revealed a novel homozygous mutation. CONCLUSION: The clinical and imaging findings of patients with POLR1C hypomyelinating leukodystrophy are reviewed. Interestingly, severe myoclonic dystonia and T2 hypointensity of the substantia nigra and the subthalamic nucleus are not reported yet and could be helpful for the diagnosis of POLR1C hypomyelinating leukodystrophy.


Assuntos
Encefalopatias Metabólicas Congênitas , RNA Polimerases Dirigidas por DNA/genética , Distúrbios Distônicos , Imageamento por Ressonância Magnética , RNA Polimerase III/genética , Substância Negra/diagnóstico por imagem , Núcleo Subtalâmico/diagnóstico por imagem , Adolescente , Encefalopatias Metabólicas Congênitas/diagnóstico por imagem , Encefalopatias Metabólicas Congênitas/genética , Distúrbios Distônicos/diagnóstico por imagem , Distúrbios Distônicos/genética , Feminino , Humanos
5.
Neurol Genet ; 4(6): e289, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30584594

RESUMO

OBJECTIVE: To identify the genetic cause of hypomyelinating leukodystrophy in 2 consanguineous families. METHODS: Homozygosity mapping combined with whole-exome sequencing of consanguineous families was performed. Mutation consequences were determined by studying the structural change of the protein and by the RNA analysis of patients' fibroblasts. RESULTS: We identified a biallelic mutation in a gene coding for a Pol III-specific subunit, POLR3K (c.121C>T/p.Arg41Trp), that cosegregates with the disease in 2 unrelated patients. Patients expressed neurologic and extraneurologic signs found in POLR3A- and POLR3B-related leukodystrophies with a peculiar severe digestive dysfunction. The mutation impaired the POLR3K-POLR3B interactions resulting in zebrafish in abnormal gut development. Functional studies in the 2 patients' fibroblasts revealed a severe decrease (60%-80%) in the expression of 5S and 7S ribosomal RNAs in comparison with control. CONCLUSIONS: These analyses underlined the key role of ribosomal RNA regulation in the development and maintenance of the white matter and the cerebellum as already reported for diseases related to genes involved in transfer RNA or translation initiation factors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa