Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Eur J Immunol ; 53(12): e2350528, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698527

RESUMO

Immunotherapeutic modulation of antigen-specific T-cell responses instead of the whole repertoire helps avoid immune-related adverse events. We have developed an artificial antigen-presenting system (aAPS) where multiple copies of a multimeric peptide-MHC class I complex presenting a murine class I MHC restricted ovalbumin-derived peptide (signal 1), along with a costimulatory ligand (signal 2) are chemically conjugated to a dextran backbone. Cognate naive CD8+ T cells, when treated with this aAPS underwent significant expansion and showed an activated phenotype. Furthermore, elevated expression of effector cytokines led to the differentiation of these cells to cytotoxic T lymphocytes which resulted in target cell lysis, indicative of the functional efficacy of the aAPS. CD8+ T cells with decreased proliferative potential due to repeated antigenic stimulation could also be re-expanded by the developed aAPS. Thus, the developed aAPS warrants further engineering for future application as a rapidly customizable personalized immunotherapeutic agent, incorporating patient-specific MHC-restricted tumor antigens and different costimulatory signals to modulate both naive and antigen-experienced but exhausted tumor-specific T cells in cancer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Camundongos , Animais , Dextranos/metabolismo , Ativação Linfocitária , Imunoterapia , Peptídeos/metabolismo , Células Apresentadoras de Antígenos , Neoplasias/terapia , Neoplasias/metabolismo
2.
Biochem Biophys Res Commun ; 677: 31-37, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37542773

RESUMO

TIGIT (T cell immunoglobulin and ITIM domain) is an inhibitory receptor expressed on T and NK cells that interact with cell surface glycoprotein belonging to the nectin and nectin-like family of cell adhesion molecules, particularly nectin-2 and nectin-like 5 (PVR). Nectin-4 has been recently identified as a novel ligand for TIGIT and the interaction among them inhibits NK cell cytotoxicity. In this study, biophysical experiments were conducted to decipher the mechanism of this novel interaction, followed by structure-guided mutagenesis studies to map the nectin-4 binding interface on TIGIT. Using surface plasmon resonance, we deduced that TIGIT recognizes the membrane distal ectodomain of nectin-4 and the interaction is weaker than the well-characterized TIGIT: nectin-2 interaction. Deciphering the molecular basis of this newly identified interaction between TIGIT and nectin-4 will provide us important insight into the manipulation of this inhibitory signaling pathway, especially targeting cancer cells overexpressing nectin-4 that evade the immune surveillance of the body.


Assuntos
Moléculas de Adesão Celular , Neoplasias , Nectinas/genética , Nectinas/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Receptores Imunológicos , Células Matadoras Naturais , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo
3.
Biochem Soc Trans ; 51(6): 2103-2115, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37970977

RESUMO

Cadherins are type-I membrane glycoproteins that primarily participate in calcium-dependent cell adhesion and homotypic cell sorting in various stages of embryonic development. Besides their crucial role in cellular and physiological processes, increasing studies highlight their involvement in pathophysiological functions ranging from cancer progression and metastasis to being entry receptors for pathogens. Cadherins mediate these cellular processes through homophilic, as well as heterophilic interactions (within and outside the superfamily) by their membrane distal ectodomains. This review provides an in-depth structural perspective of molecular recognition among type-I and type-II classical cadherins. Furthermore, this review offers structural insights into different dimeric assemblies like the 'strand-swap dimer' and 'X-dimer' as well as mechanisms relating these dimer forms like 'two-step adhesion' and 'encounter complex'. Alongside providing structural details, this review connects structural studies to bond mechanics merging crystallographic and single-molecule force spectroscopic findings. Finally, the review discusses the recent discoveries on dimeric intermediates that uncover prospects of further research beyond two-step adhesion.


Assuntos
Caderinas , Nanotecnologia , Adesão Celular/fisiologia , Caderinas/metabolismo
4.
Mol Biol Rep ; 50(5): 4665-4673, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37016039

RESUMO

Viruses are obligate intracellular parasites that depend on host cellular machinery for performing even basic biological functions. One of the many ways they achieve this is through molecular mimicry, wherein the virus mimics a host sequence or structure, thereby being able to hijack the host's physiological interactions for its pathogenesis. Such adaptations are specific recognitions that often confer tissue and species-specific tropisms to the virus, and enable the virus to utilise previously existing host signalling networks, which ultimately aid in further steps of viral infection, such as entry, immune evasion and spread. A common form of sequence mimicry utilises short linear motifs (SLiMs). SLiMs are short-peptide sequences that mediate transient interactions and are major elements in host protein interaction networks. This work is aimed at providing a comprehensive review of current literature of some well-characterised SLiMs that play a role in the attachment and entry of viruses into host cells, which mimic physiological receptor-ligand interactions already present in the host. Considering recent trends in emerging diseases, further research on such motifs involved in viral entry can help in the discovery of previously unknown cellular receptors utilised by viruses, as well as help in the designing of targeted therapeutics such as vaccines or inhibitors directed towards these interactions.


Assuntos
Viroses , Vírus , Humanos , Mimetismo Molecular , Mapas de Interação de Proteínas , Receptores de Superfície Celular/metabolismo , Interações Hospedeiro-Patógeno
5.
Arch Biochem Biophys ; 727: 109329, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35738425

RESUMO

Cadherins are a family of cell surface glycoproteins that mediate Ca2+-dependent cell to cell adhesion. They organize to form large macromolecular assemblies at the junctions of cells in order to form and maintain the integrity of tissue structures, thereby playing an indispensable role in the multicellular organization. Notably, a large body of research on E- and N-cadherin, the two most widely studied members of the cadherin superfamily, suggest for homophilic associations among them to drive cell adhesion. Interestingly, latest studies also highlight for direct crosstalk among these two classical cadherins to form heterotypic connections in physiological as well as in disease environment. However, the molecular details for the heterophilic association of E-cadherin and N-cadherin has not been investigated yet, which we aimed to address in this work. Using surface plasmon resonance and flow cytometry based biophysical studies we observed heterophilic interaction between E- and N-cadherin mediated through the membrane distal ectodomains. Further, the heterodimeric interface of E-cadherin and N-cadherin was mapped using structure-guided mutational studies followed by complementary biophysical analyses to identify the important interface residues involved in the interaction. The results obtained imply significant resemblance in the interface residues of E-cadherin that are crucial for homophilic recognition of E-cadherin and heterophilic recognition of N-cadherin as well.


Assuntos
Caderinas , Caderinas/metabolismo , Adesão Celular/fisiologia , Dimerização , Mutação , Ligação Proteica
6.
Cell Microbiol ; 23(5): e13316, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33543826

RESUMO

Cell adhesion molecules mediate cell-to-cell and cell-to-matrix adhesions and play an immense role in a myriad of physiological processes during the growth and development of a multicellular organism. Cadherins belong to a major group of membrane-bound cell surface proteins that, in coordination with nectins, drive the formation and maintenance of adherens junctions for mediating cell to cell adhesion, cellular communication and signalling. Alongside adhesive function, the involvement of cadherins in mediating host-pathogen interactions has been extensively explored in recent years. In this review, we provide an in-depth understanding of microbial pathogens and their virulence factors that exploit cadherins for their strategical invasion into the host cell. Furthermore, macromolecular interactions involving cadherins and various microbial factors such as secretory toxins and adhesins lead to the disintegration of host cell junctions followed by the entry of the pathogen or triggering downstream signalling pathways responsible for successful invasion of the pathogenic microbes are discussed. Besides providing a comprehensive insight into some of the structural complexes involving cadherins and microbial factors to offer the mechanistic details of host-pathogen interactions, the current review also highlights novel constituents of various cell signalling events such as endocytosis machinery elicited upon microbial infections.


Assuntos
Bactérias/patogenicidade , Caderinas/metabolismo , Fungos/patogenicidade , Interações Hospedeiro-Patógeno , Vírus/patogenicidade , Animais , Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Endocitose , Fungos/metabolismo , Humanos , Micoses/microbiologia , Transdução de Sinais , Virulência , Fatores de Virulência/metabolismo , Viroses/virologia
7.
Proc Natl Acad Sci U S A ; 116(7): 2634-2639, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30683721

RESUMO

Random amino acid copolymers used in the treatment of multiple sclerosis in man or experimental autoimmune encephalomyelitis (EAE) in mice [poly(Y,E,A,K)n, known as Copaxone, and poly(Y,F,A,K)n] function at least in part by generation of IL-10-secreting regulatory T cells that mediate bystander immunosuppression. The mechanism through which these copolymers induce Tregs is unknown. To investigate this question, four previously described Vα3.2 Vß14 T cell receptor (TCR) cDNAs, the dominant clonotype generated in splenocytes after immunization of SJL mice, that differed only in their CDR3 sequences were utilized to generate retrogenic mice. The high-level production of IL-10 as well as IL-5 and small amounts of the related cytokines IL-4 and IL-13 by CD4+ T cells isolated from the splenocytes of these mice strongly suggests that the TCR itself encodes information for specific cytokine secretion. The proliferation and production of IL-10 by these Tregs was costimulated by activation of glucocorticoid-induced TNF receptor (GITR) (expressed at high levels by these cells) through its ligand GITRL. A mechanism for generation of cells with this specificity is proposed. Moreover, retrogenic mice expressing these Tregs were protected from induction of EAE by the appropriate autoantigen.


Assuntos
Células-Tronco Hematopoéticas/citologia , Interleucina-10/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Animais , DNA Complementar , Encefalomielite Autoimune Experimental/imunologia , Feminino , Vetores Genéticos , Tolerância Imunológica , Interleucinas/metabolismo , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Fatores de Necrose Tumoral/metabolismo
8.
Biochem Biophys Res Commun ; 534: 504-510, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220924

RESUMO

Nectins are a family of four cell surface glycoproteins belonging to the immunoglobulin superfamily that mediate cell-cell adhesion and associated signalling pathways, thereby regulating several physiological processes including morphogenesis, growth and development of multicellular organisms. Nectins interact among themselves through their extracellular domains from the adjacent cells in both homophilic and heterophilic fashions to support cell-cell adhesion. Although nectins form homodimers as demonstrated in experimental set-ups, only the specific heterophilic interactions among nectins are physiologically relevant as shown by in vivo studies. It has been hypothesised that a conserved charged residue present at the binding interface acts as the molecular switch for heterophilic nectin-nectin recognitions. In this work, we have analysed the energetics of homophilic and heterophilic interactions of nectins, followed by surface plasmon resonance-based binding studies and complementary in silico analyses. Our findings confirm that the conserved charged residues at the binding interfaces dictate the specificity of the nectin-nectin heterophilic interactions. Furthermore, these residues also play a role in conferring higher affinity to the heterophilic interactions, thereby making them physiologically more prevalent compared to homophilic interactions. Thus, this work reveals the molecular basis of heterophilic recognitions among nectins that contribute to their physiological functions.


Assuntos
Nectinas/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Humanos , Modelos Moleculares , Nectinas/química , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Multimerização Proteica , Eletricidade Estática
9.
Proteins ; 86(11): 1157-1164, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30183103

RESUMO

Cell adhesion molecules such as nectins and cadherins play important role in the formation of adherens junction. While nectins interact through their extracellular domains in both homophilic and heterophilic manner among themselves, extracellular domains of cadherins participate only in homophilic fashion to mediate cell-cell adhesion. It is well established that nectins recruit cadherins in the adhesion sites through an interplay of adaptor molecules in the cytoplasmic side thereby increasing the effective concentration of both the adhesion molecules on the cell surface. This study provides molecular and structural bases of the novel interaction between extracellular domains of nectin-2 and N-cadherin, by which nectins can also recruit cadherins at the site of adherens junction through an adaptor-independent mechanism. Surface plasmon resonance study demonstrates that nectin-2 can directly recognize N-cadherin with a KD of 3.5 ± 0.6 µM which is physiologically relevant considering the affinities between other cell adhesion molecules including cadherin dimerization. Furthermore, structural analysis of currently available homodimeric structures of both nectin-2 and N-cadherin followed by molecular docking as well as complementary mutagenesis studies revealed the binding interface of this novel interaction.


Assuntos
Caderinas/metabolismo , Nectinas/metabolismo , Caderinas/química , Caderinas/genética , Humanos , Simulação de Acoplamento Molecular , Nectinas/química , Nectinas/genética , Mutação Puntual , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Multimerização Proteica , Redobramento de Proteína
10.
J Immunol ; 193(5): 2135-46, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25063871

RESUMO

Self-reactive T cells must escape thymic negative selection to mediate pathogenic autoimmunity. In the NOD mouse model of autoimmune diabetes, several ß cell-cytotoxic CD8 T cell populations are known, with the most aggressive of these represented by AI4, a T cell clone with promiscuous Ag-recognition characteristics. We identified a long-elusive ß cell-specific ligand for AI4 as an unusually short H-2D(b)-binding 7-mer peptide lacking a C-terminal anchor residue and derived from the insulin A chain (InsA14-20). Crystallography reveals that compensatory mechanisms permit peptides lacking a C-terminal anchor to bind sufficiently to the MHC to enable destructive T cell responses, yet allow cognate T cells to avoid negative selection. InsA14-20 shares two solvent-exposed residues with previously identified AI4 ligands, providing a structural explanation for AI4's promiscuity. Detection of AI4-like T cells, using mimotopes of InsA14-20 with improved H-2D(b)-binding characteristics, establishes the AI4-like T cell population as a consistent feature of the islet infiltrates of NOD mice. Our work establishes undersized peptides as previously unrecognized targets of autoreactive CD8 T cells and presents a strategy for their further exploration as Ags in autoimmune disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Peptídeos/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Cristalografia por Raios X , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Peptídeos/química , Peptídeos/genética , Relação Estrutura-Atividade
11.
Cell Mol Life Sci ; 72(4): 645-58, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25326769

RESUMO

Cell-cell adhesive processes are central to the physiology of multicellular organisms. A number of cell surface molecules contribute to cell-cell adhesion, and the dysfunction of adhesive processes underlies numerous developmental defects and inherited diseases. The nectins, a family of four immunoglobulin superfamily members (nectin-1 to -4), interact through their extracellular domains to support cell-cell adhesion. While both homophilic and heterophilic interactions among the nectins are implicated in cell-cell adhesion, cell-based and biochemical studies suggest heterophilic interactions are stronger than homophilic interactions and control a range of physiological processes. In addition to interactions within the nectin family, heterophilic associations with nectin-like molecules, immune receptors, and viral glycoproteins support a wide range of biological functions, including immune modulation, cancer progression, host-pathogen interactions and immune evasion. We review current structural and molecular knowledge of nectin recognition processes, with a focus on the biochemical and biophysical determinants of affinity and selectivity that drive distinct nectin associations. These proteins and interactions are discussed as potential targets for immunotherapy.


Assuntos
Moléculas de Adesão Celular/metabolismo , Caderinas/química , Caderinas/metabolismo , Adesão Celular/fisiologia , Moléculas de Adesão Celular/química , Herpesvirus Humano 1/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunoglobulinas/química , Nectinas , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Internalização do Vírus
12.
Proc Natl Acad Sci U S A ; 109(37): 14836-40, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22927415

RESUMO

Nectins are members of the Ig superfamily that mediate cell-cell adhesion through homophilic and heterophilic interactions. We have determined the crystal structure of the nectin-2 homodimer at 1.3 Å resolution. Structural analysis and complementary mutagenesis studies reveal the basis for recognition and selectivity among the nectin family members. Notably, the close proximity of charged residues at the dimer interface is a major determinant of the binding affinities associated with homophilic and heterophilic interactions within the nectin family. Our structural and biochemical data provide a mechanistic basis to explain stronger heterophilic versus weaker homophilic interactions among these family members and also offer insights into nectin-mediated transinteractions between engaging cells.


Assuntos
Moléculas de Adesão Celular/química , Adesão Celular/fisiologia , Modelos Moleculares , Sequência de Bases , Moléculas de Adesão Celular/genética , Cristalografia por Raios X , Dimerização , Humanos , Dados de Sequência Molecular , Mutagênese , Nectinas , Ligação Proteica , Mapas de Interação de Proteínas , Análise de Sequência de DNA
13.
J Biol Chem ; 288(26): 19081-9, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23673663

RESUMO

Domain V of the 23S/25S/28S rRNA of the large ribosomal subunit constitutes the active center for the protein folding activity of the ribosome (PFAR). Using in vitro transcribed domain V rRNAs from Escherichia coli and Saccharomyces cerevisiae as the folding modulators and human carbonic anhydrase as a model protein, we demonstrate that PFAR is conserved from prokaryotes to eukaryotes. It was shown previously that 6-aminophenanthridine (6AP), an antiprion compound, inhibits PFAR. Here, using UV cross-linking followed by primer extension, we show that the protein substrates and 6AP interact with a common set of nucleotides on domain V of 23S rRNA. Mutations at the interaction sites decreased PFAR and resulted in loss or change of the binding pattern for both the protein substrates and 6AP. Moreover, kinetic analysis of human carbonic anhydrase refolding showed that 6AP decreased the yield of the refolded protein but did not affect the rate of refolding. Thus, we conclude that 6AP competitively occludes the protein substrates from binding to rRNA and thereby inhibits PFAR. Finally, we propose a scheme clarifying the mechanism by which 6AP inhibits PFAR.


Assuntos
Fenantridinas/farmacologia , Príons/química , Dobramento de Proteína/efeitos dos fármacos , Ribossomos/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Anidrases Carbônicas/química , Escherichia coli/metabolismo , Humanos , Chaperonas Moleculares/química , Dados de Sequência Molecular , Mutagênese , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Desnaturação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Ribossômico/química , Homologia de Sequência de Aminoácidos
14.
Proc Natl Acad Sci U S A ; 108(33): 13682-7, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21825122

RESUMO

Peptide-MHC (pMHC) multimers, in addition to being tools for tracking and quantifying antigen-specific T cells, can mediate downstream signaling after T-cell receptor engagement. In the absence of costimulation, this can lead to anergy or apoptosis of cognate T cells, a property that could be exploited in the setting of autoimmune disease. Most studies with class I pMHC multimers used noncovalently linked peptides, which can allow unwanted CD8(+) T-cell activation as a result of peptide transfer to cellular MHC molecules. To circumvent this problem, and given the role of self-reactive CD8(+) T cells in the development of type 1 diabetes, we designed a single-chain pMHC complex (scK(d).IGRP) by using the class I MHC molecule H-2K(d) and a covalently linked peptide derived from islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP(206-214)), a well established autoantigen in NOD mice. X-ray diffraction studies revealed that the peptide is presented in the groove of the MHC molecule in canonical fashion, and it was also demonstrated that scK(d).IGRP tetramers bound specifically to cognate CD8(+) T cells. Tetramer binding induced death of naive T cells and in vitro- and in vivo-differentiated cytotoxic T lymphocytes, and tetramer-treated cytotoxic T lymphocytes showed a diminished IFN-γ response to antigen stimulation. Tetramer accessibility to disease-relevant T cells in vivo was also demonstrated. Our study suggests the potential of single-chain pMHC tetramers as possible therapeutic agents in autoimmune disease. Their ability to affect the fate of naive and activated CD8(+) T cells makes them a potential intervention strategy in early and late stages of disease.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Antígenos de Histocompatibilidade/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Autoantígenos , Linfócitos T CD8-Positivos/imunologia , Morte Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/imunologia , Glucose-6-Fosfatase/imunologia , Antígenos de Histocompatibilidade/química , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Multimerização Proteica
15.
Int J Biol Macromol ; 278(Pt 1): 134584, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122073

RESUMO

Non-homologous end-joining (NHEJ) stands as a pivotal DNA repair pathway crucial for the survival and persistence of Mycobacterium tuberculosis (Mtb) during its dormant, non-replicating phase, a key aspect of its long-term resilience. Mycobacterial NHEJ is a remarkably simple two-component system comprising the rate-limiting DNA binding protein Ku (mKu) and Ligase D. To elucidate mKu's role in NHEJ, we conducted a series of in silico and in vitro experiments. Molecular dynamics simulations and in vitro assays revealed that mKu's DNA binding stabilizes both the protein and DNA, while also shielding DNA ends from exonuclease degradation. Surface plasmon resonance (SPR) and electrophoretic mobility shift assays (EMSA) demonstrated mKu's robust affinity for linear double-stranded DNA (dsDNA), showing positive cooperativity for DNA substrates of 40 base pairs or longer, and its ability to slide along DNA strands. Moreover, analytical ultracentrifugation, size exclusion chromatography, and negative stain electron microscopy (EM) unveiled mKu's unique propensity to form higher-order oligomers exclusively with DNA, suggesting a potential role in mycobacterial NHEJ synapsis. This comprehensive characterization sheds new light on mKu's function within the Mtb NHEJ repair pathway. Targeting this pathway may thus impede the pathogen's ability to persist in its latent state within the host for prolonged periods.


Assuntos
Proteínas de Bactérias , Reparo do DNA por Junção de Extremidades , Autoantígeno Ku , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Autoantígeno Ku/metabolismo , Autoantígeno Ku/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Simulação de Dinâmica Molecular , Ligação Proteica , Simulação por Computador
16.
J Mol Biol ; 436(18): 168709, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009071

RESUMO

Cell-cell junctions formed by the association of cell adhesion molecules facilitate physiological events necessary for growth and development of multicellular organisms. Among them, cadherins and nectins organize and assemble to form adherens junction, which thereby mechanically couples interacting cells. A detailed understanding of the crosstalk involving these cell adhesion molecules is fundamental to the study of the various developmental processes. Although, cadherins and nectins can recruit each other in the adherens junction through an interplay of cytoplasmic adaptor molecules, here, we report a direct interaction between N-terminal extracellular domains of E-cadherin and nectin-4 as demonstrated by surface plasmon resonance (SPR) and Atomic Force Microscopy (AFM)-based single molecule force spectroscopy (SMFS). Kinetic studies using SPR demonstrate the binding between the ectodomains of E-cadherin and nectin-4 with a KD of 3.7 ± 0.7 µM and KD of 5.4 ± 0.2 µM (reciprocal experiment). AFM-based SMFS experiments also support interaction between the ectodomains of E-cadherin and nectin-4 with the koff value of 31.48 ± 1.53 s-1 and the lifetime of the complex of 0.036 ± 0.0026 s. We thus propose a cell adhesion mechanism mediated by E-cadherin and nectin-4, which can have functional significance in early embryogenesis as evident from the expression pattern of both the proteins during early development.


Assuntos
Junções Aderentes , Caderinas , Moléculas de Adesão Celular , Microscopia de Força Atômica , Nectinas , Ligação Proteica , Humanos , Junções Aderentes/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Caderinas/metabolismo , Caderinas/genética , Caderinas/química , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Cinética , Nectinas/metabolismo , Nectinas/genética , Ressonância de Plasmônio de Superfície
17.
Mol Immunol ; 166: 39-49, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219401

RESUMO

Butyrophilin-like 2 (BTNL2) is a T cell inhibitory molecule that interacts with unknown binding partners to modulate the immune response in a number of inflammatory and autoimmune diseases. In this study, we found that the inhibitory effects of BTNL2 on T cell activation and effector functions can be executed by its N-terminal IgV domain (BTNL2 IgV1) alone. Structure-guided mutation of key residues on BTNL2 IgV1 based on known receptor-ligand interfaces involving immunoglobulin superfamily members revealed that BTNL2 uses a non-canonical binding interface with its putative receptor. A high avidity BTNL2 IgV1 probe revealed that in an inducible model of ulcerative colitis, severe colitis was accompanied by a selective enrichment of BTNL2-receptor expressing effector-memory CD4+ and CD8+ T cells in the Peyer's patches. Intraperitoneal administration of BTNL2 IgV1 resulted in a significant delay in the progression of DSS-induced colitis and also showed reduced activation of the BTNL2-receptor-expressing T cells in the Peyer's patches. Thus, this study demonstrates that the BTNL2-receptor-expressing T cells in the Peyer's patches participate in the disease pathogenesis and can serve as a novel therapeutic target in ulcerative colitis, which can be modulated by BTNL2 IgV1.


Assuntos
Colite Ulcerativa , Colite , Butirofilinas/metabolismo , Linfócitos T CD8-Positivos , Colite Ulcerativa/induzido quimicamente , Nódulos Linfáticos Agregados/metabolismo , Animais
18.
J Biol Chem ; 287(44): 37508-21, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22932895

RESUMO

A distinct three-dimensional shape of rRNA inside the ribosome is required for the peptidyl transfer activity of its peptidyltransferase center (PTC). In contrast, even the in vitro transcribed PTC RNA interacts with unfolded protein(s) at about five sites to let them attain their native states. We found that the same set of conserved nucleotides in the PTC interact identically with nascent and chemically unfolded proteins in vivo and in vitro, respectively. The time course of this interaction, difficult to follow in vivo, was observed in vitro. It suggested nucleation of folding of cytosolic globular proteins vectorially from hydrophilic N to hydrophobic C termini, consistent with our discovery of a regular arrangement of cumulative hydrophobic indices of the peptide segments of cytosolic proteins from N to C termini. Based on this observation, we propose a model here for the nucleation of folding of the nascent protein chain by the PTC.


Assuntos
Escherichia coli/metabolismo , Biossíntese de Proteínas , Dobramento de Proteína , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/enzimologia , Humanos , Cinética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptidil Transferases/metabolismo , Ligação Proteica , Estabilidade Proteica , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Ribossomos/química , Ribossomos/metabolismo , Termodinâmica
19.
Biosens Bioelectron ; 242: 115733, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820555

RESUMO

A soluble isoform of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) has been found in the serum of healthy individuals and alterations in its expression level have been linked with the development and progression of various cancers. Conventionally, soluble CTLA-4 (sCTLA-4) has been quantified by techniques such as ELISA, western blot, and flow cytometry, which however are time-consuming, highly expensive and require large sample volumes. Therefore, rapid, cost-effective and real-time monitoring of soluble CTLA-4 levels is much needed to facilitate timely diagnosis of a worsening disease and help patient selection for immunotherapeutic interventions in cancer. Here, for the first time, we report an ultrasensitive, highly selective electrochemical nanobody (NAb) based biosensor for the quantitative detection of soluble CTLA-4 employing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and gold nanoparticles modified electrode with attomole sensitivity. Incorporating nanomaterials with conductive polymers enhances the sensitivity of the electrochemical biosensor, while the nanobody's stability, specificity and ease of production make it a suitable choice as a bioreceptor. The proposed NAb-based sensor can detect sCTLA-4 from pure recombinant protein in a wide concentration range of 100 ag mL-1- 500 µg mL-1, with a limit of detection of 1.19 ag mL-1 (+3σ of the blank signal). The sensor's relative standard deviation for reproducibility is less than 0.4% and has effective real sample analytics for cell culture supernatant with no significant difference with pure recombinant protein (p < 0.05). Our proposed nanobody based sensor exhibits stability for up to 2 weeks (<3% variation). Moreover, this nanobody-based sensor presents a future opportunity for quantitative, ultrasensitive, and economical biosensor development that can be adapted to monitor the immune landscape of cancer patients to provide a larger therapeutic window.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias , Humanos , Antígeno CTLA-4 , Ouro , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Neoplasias/diagnóstico , Proteínas Recombinantes , Técnicas Eletroquímicas/métodos , Limite de Detecção
20.
J Biol Chem ; 286(51): 43771-43781, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22020935

RESUMO

The peptidyl transferase center of the domain V of large ribosomal RNA in the prokaryotic and eukaryotic cytosolic ribosomes acts as general protein folding modulator. We showed earlier that one part of the domain V (RNA1 containing the peptidyl transferase loop) binds unfolded protein and directs it to a folding competent state (FCS) that is released by the other part (RNA2) to attain the folded native state by itself. Here we show that the peptidyl transferase loop of the mitochondrial ribosome releases unfolded proteins in FCS extremely slowly despite its lack of the rRNA segment analogous to RNA2. The release of FCS can be hastened by the equivalent activity of RNA2 or the large subunit proteins of the mitochondrial ribosome. The RNA2 or large subunit proteins probably introduce some allosteric change in the peptidyl transferase loop to enable it to release proteins in FCS.


Assuntos
Mitocôndrias/metabolismo , RNA Ribossômico/genética , Ribossomos/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Animais , Bovinos , DNA Mitocondrial/metabolismo , Escherichia coli/metabolismo , Humanos , Leishmania/metabolismo , Mitocôndrias Hepáticas/metabolismo , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA/química , RNA Ribossômico/metabolismo , Ribossomos/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa