Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(21): e2301215120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186827

RESUMO

Plasma metabolite concentrations and labeling enrichments are common measures of organismal metabolism. In mice, blood is often collected by tail snip sampling. Here, we systematically examined the effect of such sampling, relative to gold-standard sampling from an in-dwelling arterial catheter, on plasma metabolomics and stable isotope tracing. We find marked differences between the arterial and tail circulating metabolome, which arise from two major factors: handling stress and sampling site, whose effects were deconvoluted by taking a second arterial sample immediately after tail snip. Pyruvate and lactate were the most stress-sensitive plasma metabolites, rising ~14 and ~5-fold. Both acute handling stress and adrenergic agonists induce extensive, immediate production of lactate, and modest production of many other circulating metabolites, and we provide a reference set of mouse circulatory turnover fluxes with noninvasive arterial sampling to avoid such artifacts. Even in the absence of stress, lactate remains the highest flux circulating metabolite on a molar basis, and most glucose flux into the TCA cycle in fasted mice flows through circulating lactate. Thus, lactate is both a central player in unstressed mammalian metabolism and strongly produced in response to acute stress.


Assuntos
Glucose , Metabolômica , Animais , Camundongos , Glucose/metabolismo , Ciclo do Ácido Cítrico , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Isótopos de Carbono/metabolismo , Marcação por Isótopo , Mamíferos/metabolismo
2.
Nat Methods ; 19(2): 223-230, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132243

RESUMO

Isotope tracing has helped to determine the metabolic activities of organs. Methods to probe metabolic heterogeneity within organs are less developed. We couple stable-isotope-labeled nutrient infusion to matrix-assisted laser desorption ionization imaging mass spectrometry (iso-imaging) to quantitate metabolic activity in mammalian tissues in a spatially resolved manner. In the kidney, we visualize gluconeogenic flux and glycolytic flux in the cortex and medulla, respectively. Tricarboxylic acid cycle substrate usage differs across kidney regions; glutamine and citrate are used preferentially in the cortex and fatty acids are used in the medulla. In the brain, we observe spatial gradations in carbon inputs to the tricarboxylic acid cycle and glutamate under a ketogenic diet. In a carbohydrate-rich diet, glucose predominates throughout but in a ketogenic diet, 3-hydroxybutyrate contributes most strongly in the hippocampus and least in the midbrain. Brain nitrogen sources also vary spatially; branched-chain amino acids contribute most in the midbrain, whereas ammonia contributes in the thalamus. Thus, iso-imaging can reveal the spatial organization of metabolic activity.


Assuntos
Encéfalo/metabolismo , Isótopos de Carbono/farmacocinética , Rim/metabolismo , Isótopos de Nitrogênio/farmacocinética , Animais , Dieta , Enzimas , Gluconeogênese , Ácido Glutâmico/biossíntese , Glicólise , Masculino , Camundongos Endogâmicos C57BL , Imagem Molecular , Análise de Célula Única , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Ácidos Tricarboxílicos/metabolismo , Fluxo de Trabalho
3.
Angew Chem Int Ed Engl ; 60(16): 9071-9077, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33529427

RESUMO

Mass spectrometry imaging (MSI) enables simultaneous spatial mapping for diverse molecules in biological tissues. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) has been a mainstream MSI method for a wide range of biomolecules. However, MALDI-MSI of biological homopolymers used for energy storage and molecular feedstock is limited by, e.g., preferential ionization for certain molecular classes. Matrix-free nanophotonic ionization from silicon nanopost arrays (NAPAs) is an emerging laser desorption ionization (LDI) platform with ultra-trace sensitivity and molecular imaging capabilities. Here, we show complementary analysis and MSI of polyhydroxybutyric acid (PHB), polyglutamic acid (PGA), and polysaccharide oligomers in soybean root nodule sections by NAPA-LDI and MALDI. For PHB, number and weight average molar mass, polydispersity, and oligomer size distributions across the tissue section and in regions of interest were characterized by NAPA-LDI-MSI.


Assuntos
Glycine max/química , Hidroxibutiratos/análise , Nanoestruturas/química , Poliésteres/análise , Ácido Poliglutâmico/análise , Polissacarídeos/análise , Silício/química , Imagem Molecular , Raízes de Plantas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Anal Chem ; 92(10): 7299-7306, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32343130

RESUMO

In plants, long-distance transport of chemicals from source to sink takes place through the transfer of sap inside complex trafficking systems. Access to this information provides insight into the physiological responses that result from the interactions between the organism and its environment. In vivo analysis offers minimal perturbation to the physiology of the organism, thus providing information that represents the native physiological state more accurately. Here we describe capillary microsampling with electrospray ionization mass spectrometry (ESI-MS) for the in vivo analysis of xylem sap directly from plants. Initially, fast MS profiling was performed by ESI from the whole sap exuding from wounds of living plants in their native environment. This sap, however, originated from the xylem and phloem and included the cytosol of damaged cells. Combining capillary microsampling with ESI-MS enabled targeted sampling of the xylem sap and single parenchymal cells in the pith, thereby differentiating their chemical compositions. With this method we analyzed soybean plants infected by nitrogen-fixing bacteria and uninfected plants to investigate the effects of symbiosis on chemical transport through the sap. Infected plants exhibited higher abundances for certain nitrogen-containing metabolites in their sap, namely allantoin, allantoic acid, hydroxymethylglutamate, and methylene glutamate, compared to uninfected plants. Using capillary microsampling, we localized these compounds to the xylem, which indicated their transport from the roots to the upper parts of the plant. Differences between metabolite levels in sap from the infected and uninfected plants indicated that the transport of nitrogen-containing and other metabolites is regulated depending on the source of nitrogen supply.


Assuntos
Alantoína/análise , Glutamatos/análise , Glycine max/química , Ureia/análogos & derivados , Xilema/química , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Glycine max/microbiologia , Espectrometria de Massas por Ionização por Electrospray , Ureia/análise
5.
Anal Chem ; 92(10): 7289-7298, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32314907

RESUMO

Characterization of the metabolic heterogeneity in cell populations requires the analysis of single cells. Most current methods in single-cell analysis rely on cell manipulation, potentially altering the abundance of metabolites in individual cells. A small sample volume and the chemical diversity of metabolites are additional challenges in single-cell metabolomics. Here, we describe the combination of fiber-based laser ablation electrospray ionization (f-LAESI) with 21 T Fourier transform ion cyclotron resonance mass spectrometry (21TFTICR-MS) for in situ single-cell metabolic profiling in plant tissue. Single plant cells infected by bacteria were selected and sampled directly from the tissue without cell manipulation through mid-infrared ablation with a fine optical fiber tip for ionization by f-LAESI. Ultrahigh performance 21T-FTICR-MS enabled the simultaneous capture of isotopic fine structures (IFSs) for 47 known and 11 unknown compounds, thus elucidating their elemental compositions from single cells and providing information on metabolic heterogeneity in the cell population.


Assuntos
Glycine max/citologia , Glycine max/metabolismo , Metabolômica , Análise de Célula Única , Bradyrhizobium/metabolismo , Isótopos de Oxigênio , Isótopos de Potássio , Glycine max/microbiologia , Espectrometria de Massas por Ionização por Electrospray
6.
Anal Chem ; 91(8): 5028-5035, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30821434

RESUMO

Mass spectrometry (MS) is an indispensable analytical tool to capture the array of metabolites within complex biological systems. However, conventional MS-based metabolomic workflows require extensive sample processing and separation resulting in limited throughput and potential alteration of the native molecular states in these systems. Ambient ionization methods, capable of sampling directly from tissues, circumvent some of these issues but require high-performance MS to resolve the molecular complexity within these samples. Here, we demonstrate a unique combination of laser ablation electrospray ionization (LAESI) coupled with a 21 tesla Fourier transform ion cyclotron resonance (21T-FTICR) for direct MS analysis and imaging applications. This analytical platform provides isotopic fine structure information directly from biological tissues, enabling the rapid assignment of molecular formulas and delivering a higher degree of confidence for molecular identification.


Assuntos
Glycine max/metabolismo , Lasers , Limite de Detecção , Imagem Molecular/métodos , Espectrometria de Massas por Ionização por Electrospray , Desenho de Equipamento , Imagem Molecular/instrumentação
7.
Methods Mol Biol ; 2437: 89-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34902142

RESUMO

Mass spectrometry imaging (MSI) plays an expanding role in the label-free spatial mapping of hundreds of molecules simultaneously. Currently, matrix-assisted laser desorption ionization (MALDI) is among the most widely adopted MSI techniques. However, matrix application can impact the fidelity of spatial distributions, and matrix selection and related spectral interferences in the low mass range can lead to biased molecular coverage. Nanophotonic ionization from silicon nanopost arrays (NAPA) is an emerging matrix-free MSI platform with enhanced sensitivity for several molecular classes, for example, neutral lipids and biooligomers. Here, we describe a protocol with minimal sample preparation for NAPA-MSI of metabolites, lipids, and biooligomers from biological tissues.


Assuntos
Lasers , Silício , Lipídeos , Imagem Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Methods Mol Biol ; 2437: 61-75, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34902140

RESUMO

Metabolomic measurements can provide functional readouts of cellular states and phenotypes. Here, we present a protocol for single-cell metabolomics that permits direct untargeted detection of a broad number of metabolites under ambient conditions, without the need for sample processing, and with high confidence in the discovery and identification of the molecular formulas for detected metabolites. This protocol describes combining fiber-based laser ablation electrospray ionization (f-LAESI) with a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer (21T-FTICR-MS) to obtain high confidence molecular formula information about detected metabolites. The f-LAESI source utilizes mid-infrared laser ablation through a sharp optical fiber tip, affording direct ambient analysis of cells without the need for sample processing. Using the 21T-FTICR-MS as a mass analyzer enabled measurement of the isotopic fine structure (IFS) for numerous metabolites simultaneously from single cells, and the IFSs were in turn computationally processed to rapidly determine the corresponding elemental compositions. This metabolomics technique complements other single cell omics measurement methods, helping to resolve complex molecular interactions that take place within cells unattainable from single cell transcriptomic and proteomics methods.


Assuntos
Metabolômica , Análise de Fourier , Lasers , Análise de Célula Única , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa