Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 107(41): 17586-91, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20921368

RESUMO

We combine experiment and computer simulation to show how macromolecular crowding dramatically affects the structure, function, and folding landscape of phosphoglycerate kinase (PGK). Fluorescence labeling shows that compact states of yeast PGK are populated as the amount of crowding agents (Ficoll 70) increases. Coarse-grained molecular simulations reveal three compact ensembles: C (crystal structure), CC (collapsed crystal), and Sph (spherical compact). With an adjustment for viscosity, crowded wild-type PGK and fluorescent PGK are about 15 times or more active in 200 mg/ml Ficoll than in aqueous solution. Our results suggest a previously undescribed solution to the classic problem of how the ADP and diphosphoglycerate binding sites of PGK come together to make ATP: Rather than undergoing a hinge motion, the ADP and substrate sites are already located in proximity under crowded conditions that mimic the in vivo conditions under which the enzyme actually operates. We also examine T-jump unfolding of PGK as a function of crowding experimentally. We uncover a nonmonotonic folding relaxation time vs. Ficoll concentration. Theory and modeling explain why an optimum concentration exists for fastest folding. Below the optimum, folding slows down because the unfolded state is stabilized relative to the transition state. Above the optimum, folding slows down because of increased viscosity.


Assuntos
Modelos Químicos , Modelos Moleculares , Fosfoglicerato Quinase/química , Conformação Proteica , Dobramento de Proteína , Sítios de Ligação/genética , Simulação por Computador , Ficoll/química , Transferência Ressonante de Energia de Fluorescência , Cinética , Fosfoglicerato Quinase/metabolismo , Temperatura , Viscosidade , Leveduras
2.
Nat Commun ; 14(1): 1394, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914633

RESUMO

Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Receptor ErbB-2/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico
3.
J Chem Phys ; 135(17): 175101, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22070323

RESUMO

Proteins fold and function in the crowded environment of the cell's interior. In the recent years it has been well established that the so-called "macromolecular crowding" effect enhances the folding stability of proteins by destabilizing their unfolded states for selected proteins. On the other hand, chemical and thermal denaturation is often used in experiments as a tool to destabilize a protein by populating the unfolded states when probing its folding landscape and thermodynamic properties. However, little is known about the complicated effects of these synergistic perturbations acting on the kinetic properties of proteins, particularly when large structural fluctuations, such as protein folding, have been involved. In this study, we have first investigated the folding mechanism of Trp-cage dependent on urea concentration by coarse-grained molecular simulations where the impact of urea is implemented into an energy function of the side chain and/or backbone interactions derived from the all-atomistic molecular dynamics simulations with urea through a Boltzmann inversion method. In urea solution, the folding rates of a model miniprotein Trp-cage decrease and the folded state slightly swells due to a lack of contact formation between side chains at the terminal regions. In addition, the equilibrium m-values of Trp-cage from the computer simulations are in agreement with experimental measurements. We have further investigated the combined effects of urea denaturation and macromolecular crowding on Trp-cage's folding mechanism where crowding agents are modeled as hard-spheres. The enhancement of folding rates of Trp-cage is most pronounced by macromolecular crowding effect when the extended conformations of Trp-cast dominate at high urea concentration. Our study makes quantitatively testable predictions on protein folding dynamics in a complex environment involving both chemical denaturation and macromolecular crowding effects.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Dobramento de Proteína , Proteínas/química , Algoritmos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Estabilidade Proteica , Triptofano/química , Ureia/química
4.
J Chem Phys ; 135(17): 175102, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22070324

RESUMO

Chemical and thermal denaturation methods have been widely used to investigate folding processes of proteins in vitro. However, a molecular understanding of the relationship between these two perturbation methods is lacking. Here, we combined computational and experimental approaches to investigate denaturing effects on three structurally different proteins. We derived a linear relationship between thermal denaturation at temperature T(b) and chemical denaturation at another temperature T(u) using the stability change of a protein (ΔG). For this, we related the dependence of ΔG on temperature, in the Gibbs-Helmholtz equation, to that of ΔG on urea concentration in the linear extrapolation method, assuming that there is a temperature pair from the urea (T(u)) and the aqueous (T(b)) ensembles that produces the same protein structures. We tested this relationship on apoazurin, cytochrome c, and apoflavodoxin using coarse-grained molecular simulations. We found a linear correlation between the temperature for a particular structural ensemble in the absence of urea, T(b), and the temperature of the same structural ensemble at a specific urea concentration, T(u). The in silico results agreed with in vitro far-UV circular dichroism data on apoazurin and cytochrome c. We conclude that chemical and thermal unfolding processes correlate in terms of thermodynamics and structural ensembles at most conditions; however, deviations were found at high concentrations of denaturant.


Assuntos
Apoproteínas/química , Azurina/química , Citocromos c/química , Flavodoxina/química , Simulação de Dinâmica Molecular , Desnaturação Proteica , Ureia/química , Dicroísmo Circular , Dobramento de Proteína , Solventes/química , Espectrofotometria Ultravioleta , Termodinâmica , Água/química
5.
Proc Natl Acad Sci U S A ; 105(33): 11754-9, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18697933

RESUMO

How the crowded environment inside cells affects the structures of proteins with aspherical shapes is a vital question because many proteins and protein-protein complexes in vivo adopt anisotropic shapes. Here we address this question by combining computational and experimental studies of a football-shaped protein (i.e., Borrelia burgdorferi VlsE) in crowded, cell-like conditions. The results show that macromolecular crowding affects protein-folding dynamics as well as overall protein shape. In crowded milieus, distinct conformational changes in VlsE are accompanied by secondary structure alterations that lead to exposure of a hidden antigenic region. Our work demonstrates the malleability of "native" proteins and implies that crowding-induced shape changes may be important for protein function and malfunction in vivo.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Dobramento de Proteína , Borrelia burgdorferi/química , Borrelia burgdorferi/metabolismo , Dicroísmo Circular , Simulação por Computador , Modelos Moleculares , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Termodinâmica
6.
Biochemistry ; 49(31): 6519-30, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20593812

RESUMO

Previous experiments with two single-domain proteins showed that macromolecular crowding can stabilize dramatically toward heat perturbation and modulate native-state structure and shape. To assess the generality of this, we here tested the effects of the synthetic crowding agents on cytochrome c, a small single-domain protein. Using far-UV circular dichroism (CD), we discovered that there is no effect on cytochrome c's secondary structure upon addition of Ficoll or dextran (0-400 mg/mL, pH 7). Thermal experiments revealed stabilizing effects (5-10 degrees C) of Ficoll 70 and dextran 70; this effect was enhanced by the presence of low levels of guanidine hydrochloride (GuHCl) that destabilize the protein. When using a smaller dextran, dextran 40, the thermal effects were larger (10-20 degrees C). In silico analysis, using structure-based (Go-like) interactions for cytochrome c, is in excellent agreement with the in vitro thermodynamic data and also agrees with scaled particle theory. Simulations of a range of crowder size and shape demonstrated that the smaller the crowder the larger the favorable effect on cytochrome c's folded-state stability. Together with previous data, we conclude that protein size, stability, conformational malleability, and folding routes, as well as crowder size and shape, are key factors that modulate the net effect of macromolecular crowding on proteins.


Assuntos
Citocromos c/química , Substâncias Macromoleculares/farmacologia , Estabilidade Proteica , Dicroísmo Circular , Simulação por Computador , Dextranos/farmacologia , Ficoll/farmacologia , Guanidina/farmacologia , Temperatura Alta , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos
7.
J Chem Phys ; 132(17): 175101, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20459186

RESUMO

We developed a multiscale approach (MultiSCAAL) that integrates the potential of mean force obtained from all-atomistic molecular dynamics simulations with a knowledge-based energy function for coarse-grained molecular simulations in better exploring the energy landscape of a small protein under chemical interference such as chemical denaturation. An excessive amount of water molecules in all-atomistic molecular dynamics simulations often negatively impacts the sampling efficiency of some advanced sampling techniques such as the replica exchange method and it makes the investigation of chemical interferences on protein dynamics difficult. Thus, there is a need to develop an effective strategy that focuses on sampling structural changes in protein conformations rather than solvent molecule fluctuations. In this work, we address this issue by devising a multiscale simulation scheme (MultiSCAAL) that bridges the gap between all-atomistic molecular dynamics simulation and coarse-grained molecular simulation. The two key features of this scheme are the Boltzmann inversion and a protein atomistic reconstruction method we previously developed (SCAAL). Using MultiSCAAL, we were able to enhance the sampling efficiency of proteins solvated by explicit water molecules. Our method has been tested on the folding energy landscape of a small protein Trp-cage with explicit solvent under 8M urea using both the all-atomistic replica exchange molecular dynamics and MultiSCAAL. We compared computational analyses on ensemble conformations of Trp-cage with its available experimental NOE distances. The analysis demonstrated that conformations explored by MultiSCAAL better agree with the ones probed in the experiments because it can effectively capture the changes in side-chain orientations that can flip out of the hydrophobic pocket in the presence of urea and water molecules. In this regard, MultiSCAAL is a promising and effective sampling scheme for investigating chemical interference which presents a great challenge when modeling protein interactions in vivo.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Algoritmos , Peptídeos/química , Conformação Proteica , Dobramento de Proteína , Termodinâmica , Ureia/química , Água/química
8.
Int J Mol Sci ; 10(2): 572-588, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19333422

RESUMO

How the crowded environment inside cells affects folding, stability and structures of proteins is a vital question, since most proteins are made and function inside cells. Here we describe how crowded conditions can be created in vitro and in silico and how we have used this to probe effects on protein properties. We have found that folded forms of proteins become more compact in the presence of macromolecular crowding agents; if the protein is aspherical, the shape also changes (extent dictated by native-state stability and chemical conditions). It was also discovered that the shape of the macromolecular crowding agent modulates the folding mechanism of a protein; in addition, the extent of asphericity of the protein itself is an important factor in defining its folding speed.


Assuntos
Antígenos de Bactérias/química , Proteínas de Bactérias/química , Flavodoxina/química , Lipoproteínas/química , Simulação de Dinâmica Molecular , Dobramento de Proteína , Sequência de Aminoácidos , Dados de Sequência Molecular , Conformação Proteica , Estabilidade Proteica
9.
J Mol Biol ; 396(1): 75-89, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-19913555

RESUMO

Flavodoxin adopts the common repeat beta/alpha topology and folds in a complex kinetic reaction with intermediates. To better understand this reaction, we analyzed a set of Desulfovibrio desulfuricans apoflavodoxin variants with point mutations in most secondary structure elements by in vitro and in silico methods. By equilibrium unfolding experiments, we first revealed how different secondary structure elements contribute to overall protein resistance to heat and urea. Next, using stopped-flow mixing coupled with far-UV circular dichroism, we probed how individual residues affect the amount of structure formed in the experimentally detected burst-phase intermediate. Together with in silico folding route analysis of the same point-mutated variants and computation of growth in nucleation size during early folding, computer simulations suggested the presence of two competing folding nuclei at opposite sides of the central beta-strand 3 (i.e., at beta-strands 1 and 4), which cause early topological frustration (i.e., misfolding) in the folding landscape. Particularly, the extent of heterogeneity in folding nuclei growth correlates with the in vitro burst-phase circular dichroism amplitude. In addition, phi-value analysis (in vitro and in silico) of the overall folding barrier to apoflavodoxin's native state revealed that native-like interactions in most of the beta-strands must form in transition state. Our study reveals that an imbalanced competition between the two sides of apoflavodoxin's central beta-sheet directs initial misfolding, while proper alignment on both sides of beta-strand 3 is necessary for productive folding.


Assuntos
Aminoácidos/química , Apoproteínas/química , Desulfovibrio desulfuricans/química , Flavodoxina/química , Dobramento de Proteína , Sequências Repetitivas de Aminoácidos , Apoproteínas/genética , Dicroísmo Circular , Biologia Computacional , Flavodoxina/genética , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação/genética , Estabilidade Proteica , Estrutura Secundária de Proteína , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa