Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 44(5): 1141-1151, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31462692

RESUMO

BACKGROUND/OBJECTIVES: Accumulation of lipid droplets inside skeletal muscle fibers (intramyocellular lipids or IMCL) with increasing obesity has been linked to skeletal muscle insulin resistance and risk of type 2 diabetes in both adults and prepubertal children. We aimed to evaluate the associations of race, genotype, prenatal factors, and postnatal factors with IMCL in early childhood. SUBJECTS/METHODS: This study was a secondary analysis performed on the GUSTO birth cohort. Soleus muscle IMCL of 392 children at 4.5 years of age was measured by magnetic resonance spectroscopy, of which usable imaging data were obtained from 277 children (137 Chinese, 87 Malays, and 53 Indians). Metabolic assessments (fasting glucose, insulin, and HOMA-IR) were performed at age 6. RESULTS: The mean IMCL level at 4.5 years was 0.481 ± 0.279% of water resonance (mean ± sd). Corroborating with results from adults, Indian children had the highest IMCL levels compared with Malay and Chinese children. Among the prenatal factors, the rate of gestational weight gain (GWG rate) was associated with offspring IMCL (B = 0.396 (0.069, 0.724); p = 0.018). Both race and GWG rate continued to be associated with offspring IMCL even after accounting for current offspring BMI. Postnatally, IMCL was associated with shorter breastfeeding duration (B = 0.065 (0.001, 0.128); p = 0.045) and conditional relative weight gain between ages 2 and 3 (B = 0.052 (0.012, 0.093); p = 0.012). The associations with postnatal factors were attenuated after adjusting for current offspring BMI. IMCL was positively associated with offspring BMI (B = 0.028 (0.012, 0.044); p = 0.001). IMCL levels were not associated with fasting glucose, fasting insulin, and HOMA-IR at age 6. CONCLUSION: This study provides evidence that IMCL accumulation occurs in early childhood and that developmental factors and race are associated with it. We also show that early childhood IMCL accumulation is well tolerated, suggesting that the adverse associations between IMCL and insulin resistance may emerge at older ages.


Assuntos
Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético , Adulto , Glicemia/análise , Índice de Massa Corporal , Pré-Escolar , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Resistência à Insulina , Masculino , Exposição Materna , Músculo Esquelético/química , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Obesidade Infantil , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Resultado da Gravidez/epidemiologia , Adulto Jovem
2.
Front Genet ; 12: 721488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621292

RESUMO

Vitamin D is an essential micronutrient whose demand is heightened during pregnancy to support the growth of the fetus. Furthermore, the fetus does not produce vitamin D and hence relies exclusively on the supply of maternal vitamin D through the placenta. Vitamin D inadequacy is linked with pregnancy complications and adverse infant outcomes. Hence, early predictive markers of vitamin D inadequacy such as genetic vulnerability are important to both mother and offspring. In this multi-ethnic Asian birth cohort study, we report the first genome-wide association analysis (GWAS) of maternal and fetal vitamin D in circulation. For this, 25-hydroxyvitamin D (25OHD) was measured in the antenatal blood of mothers during mid gestation (n=942), and the cord blood of their offspring at birth (n=812). Around ~7 million single nucleotide polymorphisms (SNPs) were regressed against 25OHD concentrations to identify genetic risk variants. About 41% of mothers had inadequate 25OHD (≤75nmol/L) during pregnancy. Antenatal 25OHD was associated with ethnicity [Malay (Β=-22.32nmol/L, p=2.3×10-26); Indian (Β=-21.85, p=3.1×10-21); reference Chinese], age (Β=0.47/year, p=0.0058), and supplement intake (Β=16.47, p=2.4×10-13). Cord blood 25OHD highly correlated with antenatal vitamin D (r=0.75) and was associated with ethnicity [Malay (Β=-4.44, p=2.2×10-7); Indian (Β=-1.99, p=0.038); reference Chinese]. GWAS analysis identified rs4588, a missense variant in the group-specific component (GC) gene encoding vitamin D binding protein (VDBP), and its defining haplotype, as a risk factor for low antenatal (Β=-8.56/T-allele, p=1.0×10-9) and cord blood vitamin D (Β=-3.22/T-allele, p=1.0×10-8) in all three ethnicities. We also discovered a novel association in a SNP downstream of CYP2J2 (rs10789082), a gene involved in 25-hydroxylation of vitamin D, with vitamin D in pregnant women (Β=-7.68/G-allele, p=1.5×10-8), but not their offspring. As the prevention and early detection of suboptimal vitamin D levels are of profound importance to both mother and offspring's health, the genetic risk variants identified in this study allow risk assessment and precision in early intervention of vitamin D deficiency.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa