Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 322(6): C1230-C1247, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35508187

RESUMO

Sarcolemmal/plasmalemmal ATP-sensitive K+ (KATP) channels have key roles in many cell types and tissues. Hundreds of studies have described how the KATP channel activity and ATP sensitivity can be regulated by changes in the cellular metabolic state, by receptor signaling pathways and by pharmacological interventions. These alterations in channel activity directly translate to alterations in cell or tissue function, that can range from modulating secretory responses, such as insulin release from pancreatic ß-cells or neurotransmitters from neurons, to modulating contractile behavior of smooth muscle or cardiac cells to elicit alterations in blood flow or cardiac contractility. It is increasingly becoming apparent, however, that KATP channels are regulated beyond changes in their activity. Recent studies have highlighted that KATP channel surface expression is a tightly regulated process with similar implications in health and disease. The surface expression of KATP channels is finely balanced by several trafficking steps including synthesis, assembly, anterograde trafficking, membrane anchoring, endocytosis, endocytic recycling, and degradation. This review aims to summarize the physiological and pathophysiological implications of KATP channel trafficking and mechanisms that regulate KATP channel trafficking. A better understanding of this topic has potential to identify new approaches to develop therapeutically useful drugs to treat KATP channel-related diseases.


Assuntos
Células Secretoras de Insulina , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Canais KATP/genética , Canais KATP/metabolismo , Transporte Proteico
2.
bioRxiv ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39211194

RESUMO

Involved in immunity and reproduction, natural killer (NK) cells offer opportunities to develop new immunotherapies to treat infections and cancer or to alleviate pregnancy complications. Most current strategies use cytokines or antibodies to enhance NK-cell function, but none use ion channel modulators, which are widely used in clinical practice to treat hypertension, diabetes, epilepsy, and other conditions. Little is known about ion channels in NK cells. We show that Kcnj8, which codes for the Kir6.1 subunit of a certain type of ATP-sensitive potassium (K ATP ) channel, is highly expressed in murine splenic and uterine NK cells compared to other K + channels previously identified in NK cells. Kcnj8 expression is highest in the most mature subset of splenic NK cells (CD27 - CD11b + ) and in NKG2A + or Ly49C/I + educated uterine NK cells. Using patch clamping, we show that a subset of NK cells expresses a current sensitive to the Kir6.1 blocker PNU-37883A. Kcnj8 does not participate in NK cell degranulation in response to tumor cells in vitro or rejection of tumor cells in vivo . Transcriptomics show that genes previously implicated in NK cell development are amongst those differentially expressed in CD27 - CD11b + NK cells deficient of Kcnj8 . Indeed, we found that mice with NK-cell specific Kcnj8 gene ablation have fewer CD11b + CD27 - and KLRG-1 + NK cells in the bone barrow and spleen. These results show that the K ATP subunit Kir6.1 has a key role in NK-cell development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa