RESUMO
Microplastics (MPs) pose one of the major environmental threats to marine organisms and ecosystems on a global scale. The present study investigated MPs in surface water, beach sediments, and fish in two coastal areas of Bangladesh namely Cox's Bazar and Kuakata. The MPs were identified and characterized using three different techniques, including the binocular microscope, the ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy), and SEM-EDS (Scanning Electron Microscopy- Energy Dispersive Spectroscopy). The number of MPs in seawater was 10.1 ± 3.10 and 8.52 ± 3.92 items/100â¯L and in beach sediment, 13.2 ± 3.68 and 9.48 ± 3.63 items/100â¯g in Cox's Bazar and Kuakata, respectively. In fish samples, the abundance of MPs was 7.82 ± 1.28 and 6.82 ± 1.87 items/individual species of Cox's Bazar and Kuakata, respectively, where the highest quantities of MP were found in Euthynnus affinisand Sillago sihama and the lowest in Terapon jarbua and Pampus chinensisin Cox's Bazar and Kuakata, respectively. The number of MPs in GITs (Gastrointestinal tracts) was 1.63 ± 0.991 and 1.25 ± 0.546 items/g GIT and in BW (Body Weight) were 0.042 ± 0.014 and 0.037 ± 0.014 items/g BW in Cox's Bazar and Kuakata, respectively. There revealed a positive correlation between MP abundance and GIT weight and body weight in fish species. MPs were predominantly fiber-shaped, white/transparent, and small size. The most common MP polymers were polyethylene and polypropylene. SEM images of MPs demonstrate surface roughness, cracks, mechanical weathering and oxidative weathering, demonstrating their ongoing environmental exposure. The EDS spectrum unearthed that the MPs contained several elements (C, N, O, Na, Al, Fe, and Si). Findings from this study might be useful in coastal plastic particle management and to mitigate the potential risks associated with them.